Нейтрофилы. Физиология иммунной системы Бактерицидные продукты нейтрофилов и макрофагов

Фагоцитоз представляет собой филогенетически наиболее древнюю иммунную реакцию и является первой реакцией иммунной системы на внедрение чужеродных антигенов, которые могут поступать в организм в составе бактериальных клеток или вирусных частиц, а также в виде высокомолекулярного белка или полисахарида. Макрофаги и моноциты - древние клетки иммунной системы. Последние являются циркулирующими в периферической крови предшественниками макрофагов, функции которых разнообразны и не исчерпываются потребностями иммунной защиты организма.

Впервые на защитную функцию макрофагов указал И. И. Мечников, открывший явление фагоцитоза и получивший за это Нобелевскую премию 1908 г. В настоящее время известна другая фундаментальная роль макрофагов - представление этими клетками антигенов лимфоцитам. Без этой функции макрофагов невозможно специфическое распознавание чужеродного антигена. Кроме того, макрофаги являются продуцентами многочисленных медиаторов иммунных реакций (интерлейкины, простагландины), а также белков системы комплемента.

Основой эволюционного становления фагоцитоза как иммунологического феномена явилась пищеварительная функция. Предковые одноклеточные организмы поглощали и переваривали чужеродные вещества внешней среды с целью питания. Такой тип питания сохранился у современных протозоа, губок и кишечнополостных. Источником питания, возможно, служили не только неструктурированные вещества, но и прокариоты, среди которых встречается много патогенных микроорганизмов. Несмотря на совершенствование в филогенезе механизмов специфической иммунной защиты, фагоцитарная функция амебоцитов-макрофагов сохранилась в эволюции от одноклеточных до высших многоклеточных, включая млекопитающих.

Моноциты. Основой всей моноцитарно-фагоцитарной системы (МФС) является популяция иммунокомпетентных клеток - моноциты. В периферической крови человека в нормальных условиях содержится обычно 0,2-0,8 10 9 этих клеток в 1 л. После недолгого пребывания в крови моноциты мигрируют в ткани, где формируют МФС. Моноциты присутствуют повсюду - в соединительной ткани, вокруг базальных мембран мелких кровеносных сосудов, высокое содержание их обнаруживается в легких (альвеолярные макрофаги) и печени (клетки Купфера). Макрофаги выстилают синусоиды селезенки и медуллярные

Рис. 8.6 Основные фазы фагоцитоза (1-8) и уничтожение бактерии

синусы лимфатических узлов. Моноцитарное происхождение имеют мезангиальные клетки почечных клубочков, микроглиальные клетки мозга и остеокласты костной ткани. Моноциты, как правило, мигрируют в ткани диффузно, хаотично. В случае появления клеток, несущих чужеродную информацию, возникает хемотаксический сигнал, направляющий и ускоряющий движение моноцитов из кровотока и окружающих тканей. Макрофаги и некоторые другие клетки МФС живут около 2 месяцев, а некоторые субпопуляции - многие годы. Полагают, что именно этими долгоживущими клетками определяется пожизненная фиксация татуировки и «черное легкое» курильщиков. Внесосудистый пул клеток МФС превышает пул моноцитов циркулирующих в крови, примерно в 25 раз. Наиболее богаты ими печень, легкие, селезенка. Во многих тканях (например, в мышечных) плотность расположения макрофагов исключительно низка.

Механизм фагоцитоза однотипен и включает 8 последовательных фаз (рис. 8.6): 1) хемотаксис (направленное движение фагоцита к объекту), 2) адгезия (прикрепление к объекту), 3) активация мембраны (актин-миозиновой системы фагоцита), 4) начало собственно фагоцитоза, связанное с образованием вокруг поглощаемой частицы псевдоподий, 5) образование фагосомы (поглощаемая частица оказывается заключенной в вакуоль благодаря надвиганию на нее плазматической мембраны фагоцита подобно застежке-молнии, 6) слияние фагосомы с лизосомами, 7) уничтожение и переваривание, 8) выброс продуктов деградации из клетки.

Фагоцитозу часто предшествует процесс опсонизации (от греч. opsoniazo - снабжать пищей, питать) объекта (клетки, несущей чужеродную информацию). Инициатором этого процесса является образование на поверхности клетки комплекса антиген-антитело. Опсонизация обеспечивается присутствием небольшого количества в организме молекул антител («нормальные антитела»). Антитела, локализующиеся на поверхности чужеродной клетки, стимулируют активацию и присоединение к ним белков системы комплемента. Образовавшийся комплекс действует как активатор остальных стадий фагоцитоза, стимулирует прямо или через посредство других клеток образование веществ, усиливающих эффект опсонизации чужеродной клетки.

Хемотаксис. Чужеродные клетки (опсонизированные или неопсонизированные) посылают в окружающую среду хемотаксические сигналы, в направлении которых фагоцит начинает двигаться. В качестве хемотаксических факторов рассматривается целый ряд веществ, в том числе продукты метаболизма микроорганизмов. Считается, что на ранних этапах эволюции каждый из этих факторов действовал самостоятельно. У высших организмов, в том числе у человека, все они действуют в комплексе, последовательно включаясь и усиливая друг друга. Пусковым фактором является комплекс антиген-антитело, определяющий высокую специфичность суммарного хемотаксического сигнала. На этот сигнал приходят первые фагоцитирующие элементы, которые, активируя другие иммунокомпетентные клетки, стимулируют их к выработке медиаторов, усиливающих хемотаксис. Далее хемотаксический потенциал усиливается за счет новообразованных антител, усиления образования комплексов антиген-антитело, а также ряда факторов, образующихся при разрушении макрофагами сосудов и тканей в воспалительном очаге. Этот хемотаксический сигнал второго порядка (развитого очага воспаления) обеспечивает поддержание в нем активной работы за счет поступления новых порций иммунокомпетентных клеток. Достигнув очага воспаления, макрофаг останавливается под влиянием фактора торможения миграции лейкоцитов, вырабатываемого Т-лимфоцитами-хелперами. Исчезновение в очаге воспаления чужеродных антигенов, начало процессов регенерации ведет к резкому уменьшению хемотаксического стимула и появлению продуктов, представляющих собой отрицательный хемотаксический сигнал. В результате этого новые фагоциты перестают мигрировать в воспалительный очаг, а оставшиеся жизнеспособные рассеиваются по всей ткани.

Адгезия. Акт адгезии включает две фазы: распознавание чужеродного (специфический процесс) и прикрепление, или собственно адгезию (неспецифический процесс). Адгезия фагоцитирующей клетки к объекту фагоцитоза происходит крайне медленно в том случае, если отсутствует предварительное специфическое распознавание чужеродных клеток. У высших организмов адгезия практически всегда идет с включением специфического компонента. Для активации этого процесса необходимо небольшое количество иммуноглобулинов, которые постоянно присутствуют в организме как нормальные антитела.

Захват (собственно фагоцитоз). Важная роль в осуществлении этого этапа фагоцитоза принадлежит специфическим компонентам иммунной реакции. Известно, что захват неопсонизированных частиц идет медленно, причем часть из них вообще не фагоцитируется. Наиболее сильными опсонинами являются иммуноглобулины. Специфичность в осуществлении фагоцитоза появляется в ходе эволюции как надстройка, физиологически связанная с уже имеющейся иммунной системой. В процессе фагоцитоза плазматическая мембрана макрофага при помощи образованных ею выступающих складок захватывает объект фагоцитоза и обволакивает его. Образующаяся при этом небольшая вакуоль называется фагосомой. В дальнейшем фагосома отрывается от поверхности мембраны и перемещается в цитоплазму.

Киллинг (убийство). В фагосоме захваченная чужеродная клетка гибнет. Для осуществления киллинга макрофаг продуцирует и секретирует в фагосому реакционноспособные производные кислорода.

Переваривание. Последний этап фагоцитоза - переваривание захваченного и убитого материала. Для этого с фагосомой, содержащей объект фагоцитоза, объединяются лизосомы, которые содержат более 25 различных ферментов, в число которых входит большое количество гидролитических энзимов. В фагосоме происходит активация всех этих ферментов, так называемый метаболический взрыв, в результате которого фагоцитированный объект переваривается. Часть молекул антигена при этом разрушается не полностью, их антигенная активность может существенно возрастать. Далее фагосома с остаточным антигеном выбрасывается на поверхность клетки, высвобождая иммуногенный антиген, что имеет важное значение для индукции лимфоцитами специфического иммунного ответа.

Нейтрофилы. Главный барьер против микробных инфекций представляют нейтрофилы - популяция лейкоцитов, иначе называемая микрофагами, или микрофагоцитами. Они имеют много общего с другими форменными элементами крови гемопоэтического стволового предшественника. В крови человека нейтрофилы доминируют среди остальных лейкоцитов. Они представляют собой неделящиеся короткоживущие клетки с сегментированным (более зрелые сегментоядерные нейтрофилы) и несегментированным (менее зрелые палочкоядерные нейтрофилы) ядром и набором гранул, различающихся по морфологии, гистогенезу, биохимическому составу, плотности и скорости функциональной мобилизации. Примерно 70% нейтрофилов не циркулируют в крови, а прикреплены к эндотелию сосудов. Главный резервуар пристеночных нейтрофилов - микрососуды легких: число депонированных здесь клеток в несколько раз превосходит количество циркулирующих нейтрофилов.

Срок пребывания нейтрофилов в кровотоке составляет около 6,5 ч. Далее нейтрофилы, проникая через эндотелий сосудов, попадают в ткани, где и заканчивают свое существование в течение 3-5 сут, осуществляя свои эффекторные функции, очень похожие на те, которые присущи макрофагам. Значительная часть нейтрофилов приходит к эпителию слизистых оболочек и, проникая через него, заканчивает свой жизненный цикл в слизистом надэпителиальном слое (срок жизни таких нейтрофилов исчисляется часами).

У нейтрофилов известны три типа гранул: первичные азурофильные гранулы, содержащие миелопероксидазу, небольшое количество лизоцима и набор катионных белков; вторичные «специфические» гранулы, содержащие лактоферрин, лизоцим и белок, связывающий витамин B 12 ; третичные гранулы (мельчайшие гранулы, или С-частицы), содержащие кислые гидролазы, а также практически всю желатиназную активность нейтрофила. Дегрануляция нейтрофилов может быть истинной, когда гранулы целиком выталкиваются из клетки (экзоцитоз), но чаще из гранул выделяются только растворимые компоненты и имеет место вторичное запустевание гранул (так называемая секреторная дегрануляция). Обширные запасы гликогена, который может быть использован при гликолизе, позволяют нейтрофилам существовать в анаэробных условиях.

Основной функцией нейтрофилов является уничтожение чужеродных клеток или веществ биополимерной природы путем фагоцитоза. Эту функцию нейтрофилы осуществляют только после выхода их из сосудистого пула. Процесс фагоцитоза, осуществляемого нейтрофилами, состоит из тех же самых этапов, которые выше описаны для макрофагов. В отличие от макрофагов, нейтрофилы могут фагоцитировать чужеродную клетку или частицу только один раз, после чего они гибнут.

Хемотаксис нейтрофилов обусловлен в основном продуктами жизнедеятельности бактерий или денатурированными белками разрушенных клеток собственного организма, т. е. в определенной степени эта стадия фагоцитоза является специфичной. Суммарный хемотаксический эффект усиливается многочисленными факторами разнообразной природы, активирующимися в начале разрушения чужеродного. Сам нейтрофил, будучи активированным в начале фагоцитоза, также выделяет ряд хемотаксических факторов. Благодаря каскадному усилению хемотаксического сигнала к месту разрушения объекта фагоцитоза привлекается большое количество нейтрофилов.

Уничтожение чужеродных клеток фагоцитами (макрофагами и нейтрофилами). Антигенная стимуляция резко меняет метаболический профиль фагоцитирующих клеток. К наиболее выраженным сдвигам относится резкое увеличение потребления глюкозы в реакциях гексозомонофосфатного шунта (ГМФШ), генерирующего НАДФ Н для восстановления молекулярного кислорода на мембранах цитохрома b -245. Если в покоящемся нейтрофиле подобным образом утилизируются лишь 1-2% глюкозы, то стимулированный нейтрофил способен окислить до 30% глюкозы. Одновременно возрастает потребление кислорода и образование оксидантов с мощным энергетическим потенциалом. Этот процесс

называют респираторным взрывом.

В результате респираторного взрыва образуются мощные бактерицидные агенты: супероксидный анион (О 2 -), перекись водорода H 2 0 2), синглетный кислород (1 O 2), гидроксильные радикалы (ОН -). Сочетание перекиси водорода, миелопероксидазы и ионов галогенов создает мощную систему галогенирования, приводящую к появлению крайне агрессивных вторичных метаболитов: гипохлорной кислоты (НОСl), хлорамина, продуктов перекисного окисления липидов (ПОЛ). Ключевым считается супероксидный анион, с которого берет начало каскад активных форм кислорода и сопряженных с ним феноменов. Избыток энергии реализуется путем выделения тепла, повышенной химической активностью (отсюда высокая биопидность), либо эмиссией квантов света (хемилюминесценция).

Кислороднезависимые механизмы. При дисмутации супероксидного аниона потребляются ионы водорода и слегка повышается рН, это создает оптимальные условия для функционирования семейства катионных белков. Эти белки, имеющие высокую изоэлектрическую точку, разрушают бактериальную стенку за счет протеиназного эффекта и за счет непосредственного присоединения к поверхности микроорганизма. Низкие значения рН, устанавливающиеся после слияния фагосомы с лизосомами, лизоцим и лактоферрин представляют собой Кислороднезависимые бактерицидные и бактериостатические факторы, которые могут действовать в анаэробных условиях. Убитые микроорганизмы расщепляются гидролитическими ферментами, и продукты деградации высвобождаются из фагоцитарной клетки.

Разные формы реактивности фагоцитов обеспечиваются и проявляются нередко независимо друг от друга. При хроническом грануломатозе макрофаги и нейтрофилы в связи с дефектом цитохромов b-245 не способны образовывать активные метаболиты кислорода. Это сопровождается тем, что бактерии фагоцитируются, но не уничтожаются в клетках. Кроме того, известно, что многие микроорганизмы содержат в большом количестве каталазу и могут легко инактивировать продуцируемую фагоцитами перекись водорода. Фагоциты, дефектные по глюкозо-6-фосфатдегидрогеназе, не способны продуцировать активные метаболиты кислорода и защищать организм от бактериальных инфекций. При синдроме «ленивых лейкоцитов» нарушена реакция нейтрофилов на хемотаксические сигналы.

Лейкоциты в крови представлены пятью типами клеток (нейтрофилы, эозинофилы, базофилы, лимфоциты и моноциты ), различных по функциональным и морфологическим признакам, в отличие от эритроцитов, популяция которых однородна. Анализ общего количества лейкоцитов позволяет определить общее (суммарное) количество всех типов клеток, в отличие от дифференциального анализа, с помощью которого определяют количество каждого отдельного типа лейкоцитов.

Повышение уровня лейкоцитов в крови - основной признак заболеваний, которые сопровождаются патологическими процессами, таких как воспаление, инфекции, онкология. Снижение уровня лейкоцитов встречается реже и является признаком нарушения функции иммунной системы, в результате появляется высокий риск возникновения инфекционных заболеваний.

Полноценная верификация субпопуляции лейкоцитов, особенно при лечении больных с онкогематологической патологией, имеет принципиальное значение. Поэтому сегодня в медицинской практике широкое применение приобрела технология проточной цитофлуориметрии.

ФИЗИОЛОГИЯ

Как и другие форменные элементы крови (эритроциты и тромбоциты), лейкоциты формируются в костном мозге из плюрипотентных (полипотентных) стволовых клеток (см рисунок 1).


Рисунок 1. Формирование и развитие клеток крови

Нейтрофилы

Нейтрофилы - самая многочисленная разновидность лейкоцитов, циркулирующих в крови (их доля составляет 45-70% от общего количества лейкоцитов. В структуру зрелого нейтрофила входят сегментированное ядро и темно-фиолетовые гранулы, находящиеся в цитоплазме. Основная функция нейтрофилов - проникать в ткани и уничтожать там инфекцию. Зрелые нейтрофилы, покидая костный мозг, находятся в циркулирующей крови около 8 часов - остальное время (примерно 5-8 суток) они находятся в тканях, после чего погибают.

В места воспаления или очага инфекции нейтрофилы «привлекают» выделяемые бактериями и другими клетками (макрофагами, лимфоцитами, базофилами) химические вещества (хемотаксические факторы, или хемокины). Проникая в ткани, нейтрофилы окружают инфекцию и поглощают ее - этот процесс называется фагоцитоз . В нейтрофилах образуются специальные ферменты и высокоактивные свободные радикалы, которые убивают инфекцию. В качестве свидетельства функционирования нейтрофилов может выступать гной (густая жидкость), который образуется в месте воспаления. Гной состоит в основном из ослабленных и мертвых нейтрофилов, фрагментов бактериальных клеток и других клеточных остатков, которые образуются в процессе фагоцитоза, вызванного пиогенной (гноеродной) инфекцией.

Эозинофилы

Эозинофилы локализуются в местах воспаления, вызванных аллергическими реакциями (например, бронхиальной астмой или сенной лихорадкой). Одним из компонентов патогенеза аллергических заболеваний является высвобождение химических веществ из эозинофилов.

Базофилы

В крови содержится очень мало базофилов, а в периферической крови они встречаются очень редко. В структуру базофила входит дольчатое ядро, которое маскируется крупными темно-синими гранулами.

Базофилы мигрируют в ткани, где созревают в тучные клетки. При активации из тучных клеток высвобождается большое количество химических медиаторов, среди которых хемотаксический фактор (привлекает нейтрофилы), гистамин (расширяет кровеносные сосуды, тем самым усиливая кровоток в пораженной области), гепарин (антикоагулянт, способствующий восстановлению поврежденных кровеносных сосудов).

Моноциты

В структуру моноцита входит несегментированное овальное или округлое ядро и цитоплазму, в которой обычно отсутствуют гранулы. В крови моноциты циркулируют недолго (примерно 20-40 часов), после чего проникают в ткани, где созревают в макрофаги , которые участвуют в фагоцитозе, как и нейтрофилы. Помимо фагоцитоза, макрофаги выполняют другую важную задачу - перерабатывают и представляют антигены (чужеродные белки) Т-лимфоцитам, чтобы запустить клеточный иммунный ответ . Также макрофаги принимают участие в важном физиологическом процессе - когда эритроцит становится нежизнеспособным, макрофаги обеспечивают их разрушение.

Лимфоциты

Среди всех лейкоцитов, циркулирующих в крови, лимфоциты составляют 20-40% - это вторая по численности разновидность иммунных клеток. Лимфоциты, как и другие форменные элементы крови, образуются в костном мозге. Однако некоторые из этих лимфоцитов нуждаются в дополнительном формирование в тимусе (вилочковой железе) - это Т-лимфоциты (или тимусозависимые лимфоциты . Среди всех циркулирующих в крови лимфоцитов доля Т-лимфоцитов составляет около 70%. Остальные 30% - В-лимфоциты . Также существую NK-лимфоциты (естественные (натуральные) киллеры - Natural killer cells; NK-cells) - популяция «ни Т- ни В-лимфоцитов», обладающих выраженной цитотоксичностью к опухолевым и инфицированным клеткам.

Лимфоциты, как и нейтрофилы, принимают участие в иммунной защите организма от действия патогенных элементов (инфекции). В B-лимфоцитах образуются антитела (иммуноглобулины, Ig) - белки, которые обладают способностью связывать антигены (чужеродные белковые соединения). Микробы (грибки, бактерии, вирусы и т.д.) на своей поверхности содержат особые белки, действующие как антигены. Антитела связывают эти поверхностные антигены, тем самым предупреждая проникновение вирусов и бактерий в тканевые клетки. Кроме этого, окруженный антителами микроб более подвержен фагоцитозу нейтрофилами и макрофагами. Также антитела связывают и нейтрализуют токсины, выделяемые микробами.

Несмотря на то, что антитела эффективно действуют вне клетки, они не способны проникать в саму клетку, поэтому неэффективны против внутриклеточной инфекции. Для борьбы с инфекцией, проникшей в клетку, иммунная система направляет Т-лимфоциты.

Одним из достоинств Т- и B-лимфоцитов, в отличие от других клеток крови, является способность «запоминать» микробы, с которыми им приходилось «иметь дело». Поэтому в случае последующего инфицирования (заражения), иммунная система реагирует гораздо быстрее и эффективнее. То есть, лимфоциты обеспечивают приобретенный иммунитет , поэтому люди редко страдают повторно одним и тем же инфекционным заболеванием, так как при первом контакте вырабатывается иммунитет, обеспечивающий защиту с той же инфекцией.

На функцию NK-лимфоцитов не влияет механизм приобретенного иммунитета - они вместе с нейтрофилами, эозинофилами, базофилами и моноцитами участвуют в обеспечении врожденного иммунитета .

АНАЛИЗ НА ФОРМЕННЫЕ ЭЛЕМЕНТЫ КРОВИ

ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ АНАЛИЗА
(количество лейкоцитов и дифференциальный подсчет)

Референсные значения

Общее количество лейкоцитов

3,7-9,5 × 10 9 /л

3,9-11,1 × 10 9 /л

Дифференциальное количество лейкоцитов

Нейтрофилы

2,5-7,0 × 10 9 /л

Лимфоциты

1,5-4,0 × 10 9 /л

Моноциты

0,2-0,8 × 10 9 /л

Эозинофилы

0,04-0,44 × 10 9 /л

Базофилы

0,01-0,10 × 10 9 /л

Уровень лейкоцитов в крови у новорожденных очень высокий - 5,0-26,0 × 10 9 /л. В течение первых двух месяцев жизни ребенка количество лейкоцитов в крови снижается до 8,0-18,0 × 10 9 /л и достигает нормальных показателей (как у взрослых) к 12-15-летнему возрасту.

Критические значения

Критическим значением считается, когда количество лейкоцитов < 2,0 × 10 9 /л или > 30,0 × 10 9 /л.

Термины при интерпретации результатов анализа

Полиморфно-ядерные клетки - «клетки с разнообразными формами ядра». Этот термин применяется ко всем лейкоцитам с дольчатыми и сегментированными ядрами (нейтрофилы, базофилы, эозинофилы). Моноциты и лимфоциты не относятся к полиморфно-ядерным клеткам, поскольку имеют ядра более правильной формы.

Гранулоциты - все лейкоциты, в цитоплазме которых содержатся ядра: нейтрофилы, эозинофилы, базофилы. Моноциты и лимфоциты не относятся к гранулоцитам.

Агранулоцитоз - полное отсутствие или очень низкий уровень гранулоцитов в крови.

Фагоциты - клетки, способные к фагоцитозу (поглощению инородных структур). К фагоцитам относятся нейтрофилы, базофилы, эозинофилы и моноциты. Лимфоциты не относятся к фагоцитам.

Лейкоцитоз - повышение общего количества лейкоцитов в крови.

Нейтрофилия, Эозинофилия, Базофилия - повышение уровня нейтрофилов, эозинофилов или базофилов в крови.

Лимфоцитоз - повышение количества лимфоцитов в крови.

Лейкопения - снижение количества лейкоцитов в крови.

Нейтропения - снижение количества нейтрофилов в крови.

Лимфоцитопения - снижение количества лимфоцитов в крови.

Панцитопения - снижение уровня всех форменных элементов крови: лейкоцитов, эритроцитов и тромбоцитов.

Термины при описании микроскопического исследования лейкоцитов

Увеличение количества палочкоядерных форм - палочкоядерные клетки (незрелые нейтрофилы) легко распознаются благодаря несегментированной форме ядра. В нормальном состоянии (здоровья) содержание палочкоядерных клеток в крови составляет около 3%. Повышение их уровня свидетельствует об усиленном производстве нейтрофилов в костном мозге в ответ на инфекцию.

Сдвиг влево - еще одно название, описывающее повышение количества пасочкоядерных форм.

Бластные клетки - незрелые клетки лейкоцитов, которые в нормальном (здоровом) состоянии никогда не встречаются в крови. Присутствие бластных клеток в крови всегда означает лейкоз .

ПРИЧИНЫ ПОВЫШЕНИЯ УРОВНЯ ЛЕЙКОЦИТОВ

Лейкоцитоз развивается, как правило, в результате инфекции, воспалительного процесса или других повреждений тканей. Поскольку основная функция лейкоцитов - защита организма от инфекции, - соответственно при условии инфицирования их количество увеличивается. Очень важно уметь отличать реактивный (доброкачественный) лейкоцитоз от лейкоза (злокачественного заболевания крови, при котором также увеличивается количество лейкоцитов).

Лейкозы - группа злокачественных заболеваний с поражением костного мозга, характеризующихся неконтролируемой пролиферацией одного клона (вида) незрелых клеток с подавлением процесса формирования нормальных клеток крови. В зависимости от клинического течения заболевания (острого или хронического), а также от вида клеток, дающих начало злокачественному процессу (лимфоидные клетки - предшественники лимфоцитов; миелоидные клетки - предшественники эритроцитов, тромбоцитов, гранулоцитов и моноцитов), практически все лейкозы относятся к одной из четырех групп (типов):

  • Острый миелолейкоз
  • Хронический миелолейкоз
  • Острый лимфолейкоз
  • Хронический лимфолейкоз
ОСНОВНЫЕ ПРИЗНАКИ ЧЕТЫРЕХ ТИПОВ ЛЕЙКОЗОВ

Острый миелолейкоз

Острый лимфолейкоз

Хронический миелолейкоз

Хронический лимфолейкоз

Наиболее растпространенная форма острого лейкоза. У детей встречается редко. Вероятность возникновения патологии увеличивается с возрастом

Около 80% случаев диагностируется у детей с пиком заболеваемости в 3-4-летнем возрасте.

На этот тип приходится примерно 15-20% случаев лейкоза. Патология часто развивается в возрасте 40-60 лет, но может быть обнаружена в любом возрасте.

Самая распространенная форма лейкоза (примерно 30% всех случаев лейкозов). Патология развивается преимущественно у лиц старше 50 лет

FAB-классификация (франко-американо-британская классификация), основанная на признаках аномальных клеток, идентифицирует 8 типом острого миелолейкоза (M0-M7)

FAB-классификация идентифицирует 3 типа острого лимфолейкоза (L1-L3)*

FAB-классификация не идентифицирует и не выделяет типов

При отсутствии лечения приводит к летальному исходу

Патология прогрессирует медленно, на протяжение нескольких лет. Затем может наступить острая прогрессивная стадия

Патология прогрессирует медленно, на протяжение нескольких лет.

К моменту постановки диагноза выраженные симптомы могут отсутствовать.

Основные признаки острого миелолейкоза: слабость, сонливость в результате анемии; инфекция и лихорадка гематомы и аномальные кровотечения из-за снижения уровня тромбоцитов

На момент постановки диагноза как правило наблюдаются клинические проявления.

Основные признаки острого лимфолейкоза: слабость, сонливость в результате анемии; инфекция и лихорадка из-за низкого уровня зрелых лейкоцитов, способных функционировать; гематомы и аномальные кровотечения из-за снижения уровня тромбоцитов; часто наблюдается инфильтрация ЦНС , в результате чего возникает головная боль, тошнота, рвота

К моменту постановки диагноза выраженные симптомы появляются не всегда. К основным клиническим проявлениям относят: слабость и одышка при нагрузке из-за прогрессирующей анемии; гематомы и аномальные кровотечения из-за снижения уровня тромбоцитов; обильное потоотделение во время сна; снижение массы тела

При постановке диагноза примерно 25% больных не жалуются на состояние здоровья - патология обнаруживается при анализе крови. такой период «благополучия» может продолжаться несколько лет, затем возникают симптомы, как при хроническом миелолейкозе.

Лечение начинают с химиотерапии (в комбинации из трех цитостатических препаратов). Транспалнтация костного мозга рассматривается в случае безуспешной химиотерапии у молодых пациентов.

Несмотря на то, что около 80-90% молодых пациентов достигают ремиссии, вылечить удается примерно 30% больных.**

У пожилых пациентов прогноз хуже

Лечение начинают с химиотерапии (в комбинации из трех или четырех цитостатических препаратов). Транспалнтация костного мозга рассматривается в случае безуспешной химиотерапии.***

Эффективность химиотерапии отмечается у большинства детей и примерно у 30% взрослых

Для больных до 40 лет в качестве терапии первой линии применяют трансплантацию костного мозга. В качестве альтернативного лечения назначают химиотерапию в комбинации:

Бусульфан
- Интерферон-α
- Гливек (Иматиниб)

Вылечить можно только при условии трансплантации костного мозга

Лечение не назначают до момента проявления первых симптомов. С помощью химиотерапии можно контролировать состояние пациентов, но не вылечить.

Продолжительность жизни больного может варьироваться от 1 года до 20 лет (как правило - 3-4 года).

* - FAB-классификация в настоящее время не имеет клинического значения. Для определения группы риска заболевания сегодня применяют генетическую и иммунологическую классификацию.

** - Трансплантация гемопоэтических клеток назначается пациентам с неблагоприятным прогнозом, основанном на совокупности цитогенетических и клинико-гематологических показателей.

*** - лучевая терапия показана всем больным. Трансплантация гемопоэтических клеток назначают пациентов с высоким риском патологии.

Из-за того, что при лейкозе развитие нормальных клеток крови подавлено, к основным симптомам злокачественной патологии относится анемия (вызванная дефицитом эритроцитов), склонность к кровотечениям (по причине снижения уровня тромбоцитов) и высокая предрасположенность к инфекционным заболеваниям (вызванная снижением количества нормальных лейкоцитов).

В независимости от того, какой вид лейкоцитоза обнаружен у пациента (реактивный или злокачественный), анализ крови показывает преобладание одного из пяти типов лейкоцитов. Определить преобладающий тип лейкоцитов позволяет их дифференциальный подсчет . Так как повышение уровня определенного типа лейкоцитов имеет свой ряд причин, дифференциальный подсчет позволяет диагностировать возможную патологию, которая вызвала это состояние.

Нейтрофилия

Нейтрофилия - повышение количества нейтрофилов в крови - наиболее распространенное состояние, среди других состояний, при которых увеличивается количество лейкоцитов других типов.

Реактивная нейтрофилия может быть признаком следующих состояний:

  • Большинство острых заболеваний, вызванных бактериальной инфекцией. При гнойных инфекциях, вызванных стрептококками и стафилококками показатели нейтрофилов особенно высокие - до 50 × 10 9 /л
  • Неспецифические острые воспаления (например, воспаления кишечника, ревматоидный артрит и др.)
  • Повреждения тканей при травмах, хирургических вмешательствах, инфарктах, ожогах и др.
  • Солидные опухоли (например, при раке легких количество нейтрофилов повышается в ответ на некротические изменения тканей, которые сопровождают рост опухоли)
  • Беременность и роды
  • Чрезмерное физическое напряжение

Злокачественная нейтрофилия

Хронический миелоидный лейкоз характеризуется значительным увеличением количества лейкоцитов (часто более 50 × 10 9 /л, иногда выше 500 × 10 9 /л), представленных клетками преимущественно миелоидного ряда, среди которых преобладают нейтрофилы.

Лимфоцитоз

Причиной развития реактивного лимфоцитоза могут быть следующие патологии:

  • Инфекционный мононуклеоз (лимфоидно-клеточная ангина) - острое инфекционное заболевание, возбудителем которого является вирус Эпштейна-Барр . При мононуклеозе часто наблюдается картина изолированного лимфоцитоза (особенно среди подростков и молодых людей). Основные симптомы мононуклеоза: боль в горле, головная боль, повышенная утомляемость, лихорадка, тошнота. Наблюдается увеличение шейных лимфоузлов. Через несколько дней после начала заболевания количество лейкоцитов увеличивается до 10-30 × 10 9 /л, потом постепенно снижается и через 1-2 месяца возвращается в пределы нормы.
  • Другие, менее частые вирусные заболевания : цитомегаловирусная инфекция, краснуха, ветряная оспа, вирусный гепатит, ранние стадии ВИЧ-инфекции.
  • Хронические бактериальные инфекции (например, длительный туберкулез).
  • Другие инфекции: токсоплазмоз (возбудитель Toxoplasma gondii), коклюш (возбудитель Bordetella pertussis) и др.

Причиной развития лейкоцитоза также могут быть онкологические заболевания :

  • Хронический лимфолейкоз. Общий уровень лейкоцитов часто повышается до 50-100 × 10 9 /л. При этом большинство клеток представлено зрелыми лейкоцитами. У пожилых людей выраженный лимфоцитоз (выше 50 × 10 9 /л) с большой вероятностью является признаком хронического лимфолейкоза.
  • Неходжкинская лимфома (злокачественная опухоль лимфатических узлов) в некоторых случаях может вызвать лимфоцитоз.

Эозинофилия

По сравнению с нейтрофилией и лимфоцитозом, эозинофилия встречается гораздо реже. Наиболее распространенными причинами развития эозинофилии являются:

  • Аллергия (астма, пищевая аллергия, экзема, сенная лихорадка и др)
  • Гельминтозы (круглые и ленточные черви, Schistosoma, Strongyloides и др).
  • Ходжкинская лимфома (очень редко).

Моноцитоз и базофилия

Повышение уровня этих клеток в крови встречается не так часто. Моноцитоз, как правило, наблюдается при туберкулезе, подостром бактериальном эндокардите и других хронических инфекционных заболеваниях, вызванных бактериями. Высокий уровень базофилов может быть вызван хроническим миелолейкозом.

ЛЕЙКОПЕНИЯ

Лейкопения обнаруживается гораздо реже, чем лейкоцитоз. Снижение уровня лейкоцитов в большинстве случаев происходит за счет снижения количества нейтрофилов или лимфоцитов (или нейтрофилов и лимфоцитов вместе).

Нейтропения

  • Вирусные заболевания (грипп, эпидемический паротит, вирусный гепатит, ВИЧ-инфекция) вызывают нейтропению. Сочетание нейтропении и лимфоцитоза объясняет, почему при некоторых вирусных патологиях общее количество лейкоцитов может оставаться в пределах нормы несмотря на снижение уровня нейтрофилов.
  • Массивная бактериальная инфекция. Бывают случаи, когда при тяжелых формах инфекционных заболеваний костный мозг не способен производить необходимое количество нейтрофилов.
  • Апластическая анемия - состояние, вызванное дефицитом стволовых клеток в костном мозге. Отметим, что апластическая анемия может вызвать не только угрожающую жизни нейтропению, но и недостаточность всех типов клеток крови. В большинстве случаев причину возникновения апластической анемии определить невозможно, однако известны случаи, когда это состояние провоцируют некоторые лекарственные препараты, особенно цитотоксические (используют для химиотерапии), некоторые антибактериальные препараты (например, хлорамфеникол) и препараты золота (используются при лечении ревматоидного артрита). Также причиной развития апластической анемии может быть лучевая терапия, применяемая при лечении некоторых видов рака. Кроме этого, одной из причин ограничения применения рентгеновского излучения с целью диагностики является риск развития апластической анемии.
  • Острый лейкоз. При остром лейкозе злокачественные клетки пролиферируют в ущерб развитию нормальных клеток крови, что также проявляется нейтропенией. Много видов рака метастазируют в костную ткань, откуда злокачественные клетки инфильтрируют костный мозг и подавляют процесс образования клеток крови. То есть, нейтропения может выступать в роли признака запущенной формы рака.

Лимфоцитопения

  • СПИД. ВИЧ (вирус иммунодефицита человека), который вызывает синдром приобретенного иммунодефицита человека (СПИД), оказывает свое опустошительное действие путем избирательного поражения Т-лимфоцитов. Вирус проникает внутрь Т-лимфоцитов, где и размножается, вызывая гибель клеток. Поэтому при СПИДе происходит прогрессирующая деструкция Т-лимфоцитов, что в результате приводит к развитию тяжелой формы прогрессирующей лимфоцитопении.
  • Аутоиммунная деструкция лимфоцитов (например, при системной красной волчанке) - одна из причин развития лимфоцитопении.
  • Острые воспалительные состояния (например, болезнь Крона, панкреатит, аппендицит) могут сопровождаться легкой формой лимфоцитопении.
  • Травмы, хирургические вмешательства, ожоги.
  • Грипп
  • Глубокий дефицит лимфоцитов является признаком некоторых врожденных заболеваний новорожденных, например, синдром Ди Георга (при этом заболевании недостаточно развита вилочковая железа (тимус), в результате чего ребенок рождается без Т-лимфоциов); или тяжелый синдром комбинированного иммунодефицита (SCID) , который характеризуется недостатком B- и Т-лимфоцитов.

ПОСЛЕДСТВИЯ НАРУШЕНИЯ УРОВНЯ ЛЕЙКОЦИТОВ

Повышение количества лейкоцитов в крови всегда является признаком активации иммунитета (защитной реакции организма) против инфекции, воспалительных процессов, повреждений. То есть, лейкоцитоз является естественным физиологическим процессов и, как правило, не приводит к каким-либо последствиям. Бывают случаи, когда при лейкозе уровень лейкоцитов достигает настолько высоких показателей (более 100 × 10 9 /л), что может привести к повышению вязкости крови, уменьшая ее текучесть - такое состояние называют гиперлейкоцитоз (при этом лейкоциты закупоривают микроциркуляторное русло в разных тканях и органах, тем самым нарушая в них кровоток и может представлять угрозу для жизни).

При лейкопении организм подвержен разного рода инфекционным заболеваниям. Такое состояние имеет явные клинические проявления, когда уровень нейтрофилов опускается ниже 1,0 × 10 9 /л, особенно при бактериальной инфекции полости рта и глотки. Без необходимого количества нейтрофилов эти инфекции не могут разрешится, в результате в местах инфицирования образуются изъязвления. Больные, количество нейтрофилов у которых не превышает 1,5 × 10 9 /л, рискуют умереть от неконтролируемой бактериальной инфекции. Для таких пациентов серьезную угрозу жизни представляют даже обычные (непатогенные) микроорганизмы, которые обитают на поверхности кожи. Поэтому они нуждаются в особом уходе, направленном на снижение риска возникновения инфекции.

Тяжелая лифмоцитопения значительно эффективность иммунного ответа, тем самым подвергая больного высокому риску инфицирования грибами, бактериями и вирусами. Так, в результате снижения уровня Т-лимфоцитов, больные СПИДом страдают угрожающими жизни инфекциями.

  1. НФ более избирательны в фагоцитируемых объектах, чем МФ.
  2. НФ не участвуют в презентации антигенов и специфическом иммунном ответе.
  3. НФ богаты миелопероксидазой, что формируют зеленый цвет при формировании экссудатовного гноя, после повреждения НФ или их остатоков.
  4. НФ обязательно гибнут при фагоцитозе, разбрасывая бактерицидные и цитотоксические факторы и медиаторы воспаления(нейтрофильный хемотаксический фактор, привлекающий МФ и ГКФ)
  5. При формировании атеросклеротических бляшек МФ осуществляют экндоцитоз пат. липопротеинов и поддерживают пролиферацию и биосинтез основного вещетва.
  6. МФ синтезируют медиаторы вочпаления.
  7. МФ выделяют транспортные белки, фибронектин, противоспалительные антиоксиданты, ингибиторы протеаз (СРБ), ИЛ-1, кахексин, и альфа-интерферон.

Экзоцитоз - у эукариот клеточный процесс, при котором внутриклеточные везикулы (мембранные пузырьки) сливаются с внешней клеточной мембраной. При экзоцитозе содержимое секреторных везикул (экзоцитозных пузырьков) выделяется наружу, а их мембрана сливается с клеточной мембраной. Практически все макромолекулярные соединения (белки,пептидные гормоны и др.) выделяются из клетки этим способом.

У прокариот везикулярный механизм экзоцитоза не встречается, у них экзоцитозом называют встраивание белков в клеточную мембрану (или в наружную мембрану у грамотрицательных бактерий), выделение белков из клетки во внешнюю среду или в периплазматическое пространство.

Экзоцитоз может выполнять три основные задачи:

· доставка на клеточную мембрану липидов, необходимого для роста клетки;

· высвобождение различных соединений из клетки, например, токсичных продуктов метаболизма или сигнальных молекул (гормонов или нейромедиаторов);

· доставка на клеточную мембрану функциональных мембранных белков, таких как рецепторы или белки-транспортёры. При этом часть белка, которая была направлена внутрь секреторной везикулы, оказывается выступающей на наружной поверхности клетки.

У эукариот различают два типа экзоцитоза:

1. Кальций -независимый конститутивный экзоцитоз встречается практически во всехэукариотических клетках. Это необходимый процесс для построения внеклеточного матрикса и доставки белков на внешнюю клеточную мембрану. При этом секреторные везикулы доставляются к поверхности клетки и сливаются с наружной мембраной по мере их образования.

2. Кальций-зависимый неконститутивный экзоцитоз встречается, например, в химических синапсах или клетках, вырабатывающих макромолекулярные гормоны. Этот экзоцитоз служит, например, для выделения нейромедиаторов. При этом типе экзоцитоза секреторные пузырьки накапливаются в клетке, а процесс их высвобождения запускается по определённому сигналу, опосредованному быстрым повышением концентрации ионов кальция в цитозоле клетки. В пресинаптических мембранах процесс осуществляется специальным кальций-зависимым белковым комплексом SNARE .

Этапы

Различают следующие этапы экзоцитоза:

· Транспортировка везикулы от места синтеза и формирования (аппарат Гольджи) до места доставки осуществляется моторными белками вдоль актиновых филаментов либо микротрубочек цитоскелета. Этот этап может потребовать перемещения секретируемого материала на значительное расстояние, как, например, в нейроне. Когда везикула достигает места секреции, она входит в контакт со специфическими удерживающими факторами клеточной мембраны.

· Удержание доставленной везикулы обеспечивается относительно слабыми связями на расстоянии более 25 нм и может служить, например, для концентрирования синаптических везикул около пресинаптической мембраны.

· Стыковка везикулы с мембраной является непосредственным продолжением первой фазы доставки, когда мембрана везикулы входит в близкий контакт с мембраной клетки (5-10 нм). Это включает прочное соединение белковых компонентов обеих мембран, вызванным внутримолекулярными перестановками, и предваряет формирования SNARE комплекса.

· Стимуляция (прайминг) везикулы фактически соответствует образованию особого SNARE комплекса между двумя мембранами и осуществляется только в случае нейронального экзоцитоза. Этот этап включает процессы молекулярных перестановок и АТФ-зависимые модификации белков и липидов, происходящие непосредственно до слияния мембран в ответ на подъём уровня свободного кальция. Этот кальций-зависимый процесс необходим для контролируемого быстрого выброса нейромедиатора и отсутствует в случае конститутивного экзоцитоза.

· Слияние мембраны везикулы с мембраной клетки приводит к высвобождению, или выбросу, содержания секретируемой везикулы во внеклеточное пространство и объединению липидного бислоя везикулы с внешней мембраной. В случае синаптического выброса процесс слияния, так же как и стимуляция, осуществляется SNARE комплексом.

Нейтрофилы (полиморфноядерныe лейкоциты, ПЯЛ)

Это подвижные фагоциты с сегментированным ядром. Нейтрофилы идентифицируют либо по структуре ядра, либо по поверхностному антигену CD66.

Основную роль в эффекторных функциях нейтрофилов играют компоненты гранул. Гранулы нейтрофилов классифицируют на первичные, вторичные, третичные и секреторные пузырьки. Различия между классами гранул могут быть определены после анализа белков-маркеров. В гранулах нейтрофилов сохраняется около 300 различных белков, которые могут быть освобождены в окружение клетки или оставаться присоединенными к мембране нейтрофилов.

Секреторные пузырьки
Считают, что секреторные пузырьки формируются только в зрелых сегментоядерных нейтрофилах при поступлении их в кровоток . Секреторные пузырьки по происхождению эндосомы , и представляют собой пул рецепторов, включаемых в плазматическую мембрану после слияния мембраны секреторных пузырьков с мембраной нейтрофила. В мембране секреторных пузырьков множество рецепторов - β2-интегрины, Cr1, рецепторы формил-пептида (fpr), CD14, CD16, а также ферменты металлопротеиназы и щелочная фосфатаза. В полости секреторных пузырьков содержится альбумин и белок, связывающий гепарин (HBP). Маркерный фермент пузырьков - щелочная фосфатаза.

Вторичные и третичные гранулы
Пероксидазонегативние гранулы нейтрофилов могут быть разделены на вторичные и третичные, которые отличаются содержанием белков и секреторными свойствами. Вторичные гранулы содержат больше антибактериальных соединений, чем третичные. Третичные гранулы легче, чем вторичные подвергаются экзоцитозу. Третичные гранулы – резерв матрикс-деградирующих ферментов и мембранных рецепторов, необходимых для экстравазации и диапедеза нейтрофила . Напротив, вторичные гранулы участвуют главным образом, в антибактериальных действиях нейтрофилов путем мобилизации в фагосомы или секрецию во внешнюю среду. В арсенале их антибактериальных пептидов - лактоферрин, NGAL, лизоцим и hCAP18, LL-37. Маркерный белок третичных гранул - фермент желатиназа, вторичных – лактоферрин .

Первичные гранулы
Первичные гранулы содержат кислые гидролазами, в том числе кислую фосфатазу и антибактериальные белки; их мембрана лишена рецепторов. У человека антибактериальные белки представлены нейтрофильными пептидами – α-дефензинами и сериновыми протеазами с антибактериальной активностью. При созревании нейтрофилов в костном мозге первыми еще на стадии миелобластов формируются азурофильные гранулы; дефензины (катионные белки) в азурофильных гранулах синтезируются на второй стадии дифференцировки нейтрофилов - стадии образования промиелоцитов.

Маркерный белок этих гранул фермент миелопероксидазы.

Моноциты/макрофаги

Моноциты – это фагоциты, которые циркулируют в крови. Когда моноциты мигрируют в ткани, они превращаются в макрофаги. Моноциты имеют характерную форму ядра в виде почки. Они могут быть определены морфологически или по CD14 – маркеру клеточной поверхности. В отличие от ПЯЛ они не содержат гранул, но имеют многочисленные лизосомы, содержимое которых похоже на содержимое гранул нейтрофилов. Специализированные виды макрофагов могут быть найдены во многих органах, включая легкие, почки, мозг и печень.

Макрофаги выполняют множество функций. Как мусорщики, они удаляют из организма изношенные клетки, иммунные комплексы. Макрофаги представляют чужеродный антиген для распознавания его лимфоцитами, в этом отношении макрофаги похожи на дендритные клетки. Макрофаги способны секретировать удивительное разнообразие мощных химических сигналов – монокинов, которые жизненно важны для иммунного ответа неспецифического иммунитета: ответ фагоцитов на инфекцию.

Циркулирующие в крови нейтрофилы и моноциты реагируют на сигналы опасности (SOS), образующиеся в месте локализации инфекции. SOS сигналы включают в себя N-формил-метионин, освобождаемый бактериями; пептиды, образующиеся при свертывании крови, растворимые пептиды – продукты активации системы комплемента и цитокины, секретируемые тканевыми макрофагами, которые столкнулись в тканях с бактериями. Некоторые из сигналов SOS стимулируют экспрессию молекул клеточной адгезии на эндотелиальных клетках неподалеку от места инфекции, такие как ICAM-1 и селектины. Молекулы адгезии связываются с комплементарными структурами на поверхности фагоцитирующих клеток. Как следствие нейтрофилы и моноциты прилипают к эндотелию. Вазодилататоры, освобождаемые в месте инфекции тучными клетками, способствуют диапедезу прилипших фагоцитов через эндотелиальный барьер " и миграции их к месту локализации инфекции. Перемещение в тканях по градиенту концентрации молекул SOS. Параллельно SOS сигналы активируют фагоциты, что приводит к усилению, как поглощения возбудителей, так и внутриклеточному уничтожению инвазивных организмов.

Инициирование фагоцитоза при неспецифическом иммунитете

Клетка- фагоциты имеет на своей мембране рецепторы, способствующие связыванию их с возбудителем-антигеном, и поглощать его. К важнейшим рецепторам относятся следующие структуры.

1. Fc-рецепторы - если с бактериями связываются антитела IgG , то на поверхности бактерий будут Fc-фрагменты, которые распознаются и связываются Fc- рецептором на фагоцитах. На поверхности одного нейтрофила содержится порядка 150 000 таких рецепторов! Связывание бактерий, покрытых IgG, инициирует фагоцитоз и активацию метаболической активности фагоцитов (респираторный взрыв).

2. Рецепторы комплемента - фагоциты имеют рецепторы для С3b компонента комплемента, При активации комплемента при взаимодействии со структурами поверхности бактерий, последняя покрывается гидрофобным фрагментом C3b. Связывание рецептора к C3b с С3b на приводит также к повышению фагоцитоза и стимулированию респираторного взрыва.

3. Рецепторы - мусорщики связывают широкий спектр полианионов на бактериальной поверхности, опосредуя фагоцитоз бактерий.

4. Toll-подобные рецепторы - фагоциты имеют различные Toll-подобные рецепторы, которые признают широкий спектр консервативных структур на поверхности инфекционных агентов. Связывание инфекционных агентов через Toll-подобных рецепторов приводит к фагоцитозу и высвобождению провоспалительных цитокинов (IL-1, TNF-альфа и IL-6) фагоцитами.

Фагоцитоз и неспецифический иммунитет

После прикрепления бактерий, мембрана фагоцитов образует псевдоподии, которые, в конце концов, окружают бактерию и поглощают её, бактерии оказывается заключенной в фагосому. Фагосомы сливаются с вторичными гранулами, образуя фаголизосому.

Респираторный взрыв и внутриклеточный киллинг при неспецифическом иммунитете

Во время фагоцитоза, фагоцитирующие клетки увеличивают потребление глюкозы и кислорода, этот процесс называют респираторный взрыв. Следствие респираторного взрыва – образование активных форм кислорода, которые способны убить бактерии в составе фаголизосомы. Этот процесс называют кислород-зависимый внутриклеточный киллинг. Кроме того, в составе фаголизосомы бактерии и могут быть уничтожены под действием уже имеющегося содержимого в гранулах. Комплекс этих реакций называют кислород независимый внутриклеточный киллинг.

  1. В процессе фагоцитоза включается механизм прямого окисления глюкозо-6-фосфата в пентозофосфатном пути с образованием НАДФН. Тотчас осуществляется сборка надмолекулярного комплекса активной молекулы НАДФН-оксидазы. Активированная НАДФН-оксидаза использует кислород для окисления НАДФН. В результате реакции образуется супероксид-анион. Под действием супероксиддисмутазы часть супероксид-анионов превращается в синглетный кислород и H 2 O 2 Другая часть супероксид-анионов взаимодействует с Н 2 О 2 с образованием гидроксильных радикалов и синглетного кислорода. В результате всех этих реакций образуются токсичные кислорода соединений супероксид-анион перекись водорода, синглетный кислород и гидроксильные радикалы (ОН ).

2. Кислород зависимый миелопероксидаза-зависимый внутриклеточный киллинг

Как только азурофильные гранулы сливаются с фагосомой, в состав фаголизосомы высвобождается миелопероксидаза. Миелопероксидаза катализирует реакцию образования гипохлорит иона из H2O2 и хлорид иона. Гипохлорит иона высокотоксичное соединение, мощный окислитель. Некоторая часть гипохлорита может самопроизвольно распадаться до синглетного кислорода. В результате этих реакций образуются токсичные гипохлорит (OCl -) и синглетный кислород (1 O2).

3. Реакции детоксикации (табл. 3)

Нейтрофилы и макрофаги располагают средствами защиты от действия активных форм кислорода. Эти реакции включают дисмутацию супероксид аниона в перекись водорода супероксиддисмутазой и конверсию перекиси водорода в воду каталазой.

4. Кислород-независимый внутриклеточный киллинг

Кислород-независмые механизмы внутриклеточного киллинга

5. Зависимый от оксида азота киллинг в реакциях неспецифического иммунитета

Связывание бактерий макрофагами, в частности, посредством Toll-подобных рецепторов, приводит к продукции ФНО-альфа, который аутокринно (стимулирует те же клетки, которые его секретировали) индуцирует экспрессию гена индуцибельной NO синтазы (iNOS), в результате чего макрофаги синтезируют оксида азота (NO). Если клетка подвергается действию гамма-интерферона (IFN-гамма) , синтез оксида азота усиливается. Концентрация оксид а азота, освобождаемого макрофагами, обладает выраженным токсическим действием на микроорганизмы в непосредственной близости от макрофагов.


Нейтрофильные сегментоядерные лейкоциты (нейтрофильные грануло- циты, или нейтрофилы) - преобладающая популяция белых клеток крови. Развитие нейтрофилов контролируется цитокинами, из которых главную роль играет G-CSF, а вспомогательную - GM-CSF, IL-3 и IL-6. Повышение содержания нейтрофилов в условиях воспаления регулируется цитокинами IL-17 и IL-23. IL-23 индуцирует образование IL-17, а он стимулирует выработку G-CSF.
В крови человека содержится 2,0-7,5х109/л нейтрофилов, что составляет 50-70% от общего числа лейкоцитов крови; также в крови присутствует некоторое количество (0,04-0,3х109/л, т.е. 1-6%) палочкоядерных форм нейтрофилов, не завершивших созревание. Ядро таких клеток не сегментировано, хотя и имеет уплотненную структуру хроматина. В кровотоке присутствует только 1-2% общего числа зрелых нейтрофилов в организме (остальные представлены в тканях, преимущественно в костном мозгу). Срок их пребывания в циркуляции составляет 7-10 ч.
После кратковременной циркуляции нейтрофилы покидают кровоток и мигрируют в ткани. Примерно 30% нейтрофилов, выходящих из кровотока, мигрируют в печень и костный мозг; около 20% - в легкие (точнее в их микроциркуляторное русло); около 15% - в селезенку. Основными хемо- таксическими факторами для нейтрофилов служат лейкотриен В4 и IL-8, в небольших количествах вырабатываемые в тканях. Миграция происходит с участием молекул адгезии (Р2-интегрины, Р- и Е-селектины), а также фермента эластазы, секретируемого самими нейтрофилами. Через 3-5 сут пребывания в тканях нейтрофилы подвергаются спонтанному апоптозу, т.е. запрограммированной гибели (см. раздел 3.4.1.5), и их фагоцитируют резидентные макрофаги, что предотвращает нанесение ущерба окружающим клеткам. В настоящее время допускается возможность превращения небольшой фракции тканевых нейтрофилов в долгоживущую форму и даже их дифференцировки в макрофаги. В целом функция тканевых нейтрофилов остается невыясненной.
Диаметр нейтрофилов составляет 9-12 мкм. Им свойственна уникальная морфология: ядро сегментированное (обычно состоит из 3 сегментов) с плотно упакованным хроматином (гетерохроматином); цитоплазма содержит нейтральные (по данным окрашивания) гранулы, что и определяет название этих клеток. Особенности хроматиновой структуры ядра (недоступность промоторных участков для дифференцировочных факторов) значительно ограничивает экспрессию генов и синтез макромолекул нейтрофилами de novo. Тем не менее, вопреки ранее существовавшим представлениям, нейтрофилы сохраняют способность к биосинтезу, хотя и в ограниченном масштабе.
Поскольку нейтрофилы имеют характерную морфологию, потребность в определении их мембранного фенотипа возникает только при специальном цитометрическом анализе (табл. 2.1). Для нейтрофилов характерна экспрессия на поверхности клетки ряда молекул: CD13 (аминопептидаза N, рецептор для ряда вирусов), CD14 - рецептора для липополисахарида (ЛПС) (представлен в меньших количествах, чем на моноцитах), в2-интегринов (LFA-1, Mac-1 и p155/95); Fc-рецепторов , рецепторов для компонентов комплемента (CR1, CR3 и CR4), рецепторов для хемотаксических факторов (C3aR, С5аR, рецептор для лейкотриена B4). Под влиянием ряда цитокинов (прежде всего GM-CSF) нейтрофилы экспрессируют молекулы MHC класса II (MHC-II); молекулы МНС-I экспрессируются на них конститутивно. Наиболее важные молекулы, определяющие развитие, миграцию и активацию нейтрофилов, - рецепторы для G-CSF (основного фактора, регулирующего их развитие), а также для IL-17 и IL-23, основного хемотаксического фактора - IL-8 (CXCR1, CXCR2) и хемокина, определяющего связь нейтрофилов с тканями - SDF-1 (CXCR4).
Таблица 2.1. Мембранные молекулы нейтрофилов, эозинофилов и моноцитов

Окончание табл. 2.1


Группа молекул

Нейтрофилы

Эозинофилы

Моноциты

Лектиновые
рецепторы

Дектин-1


DC-SIGN, дектин-1

Fc-рецепторы

FcyRII, FcyRIII, FcaR; при активации - FcyRI

FcyRII, FcyRIII, FceRI, FceRII, FcaR; при активации - FcyRI

FcyRI, FcyRII, FcyRIII;
при активации - FcaR

Рецепторы
комплемента

CR1, CR3; C3aR, C5aR, C5L2

CR1; C3aR

CR1, CR3, CR4; C3aR, C5aR

Цитокиновые
рецепторы

Для G-CSF, GM- CSF, IL-3, IL-17

Для GM-CSF, IL-3, IL-4, IL-5, IL-13

Для M-CSF, GM- CSF, IFNy, IFNa/p, IL-1, IL-2, IL-3, IL-4, IL-6, IL-10, IL-15, IL-21, TNFa и т.д.

Хемокиновые
рецепторы

CXCR1, CXCR2, CXCR3, CXCR4

CCR1, CCR2, CCR3, CCR5

CCR1, CCR2, CCR3, CCR5, CX3CR1

Интегрины

P2 - LFA-a, Mac-1, aDP2; рецептор - ICAM-2

Pj - VLA-4;
P2 aD?2

Р1 - VLA-1, VLA-2, VLA-4, VLA-5, VLA-6; p2 - LFA-1, Mac-1, p150, p45, aDP2; рецепторы - ICAM-2, ICAM-3

Молекулы главного комплекса гистосовместимости (MHC)


MHC-I; при активации - MHC-II

MHC-I, MHC-II (при активации усиливается)

Костимулирую- щие молекулы


При активации - CD154

CD86 (слабо); при активации - CD80, CD86

Другие молекулы

CD14, CD13

CD9

CD14, CD13

Наибольшее своеобразие свойственно гранулам нейтрофилов (табл. 2.2), представляющим разновидность лизосом. Различают 4 разновидности гранул этих клеток: азурофильные (первичные), специфические (вторичные), желатиназные (третичные) и секреторные везикулы. Специфические гранулы содержат ферменты, проявляющие свою активность при нейтральных и слабощелочных значениях рН: лактоферрин, щелочную фосфатазу, лизоцим, а также белок BPI, связывающий витамин В12. Маркерами этой разновидности гранул служат лактоферрин и мембранная молекула CD66. В специфических гранулах содержится большое количество фермента NADPН-оксидазы, катализирующего «кислородный взрыв» и образование активных форм кислорода - главных факторов бактерицидности фагоцитов. Азурофильные гранулы содержат широкий набор гидролаз и других ферментов, активных при кислых значениях рН: миелопероксидазу, а-фукозидазу, 5’-нуклеотидазу, р-галактозидазу, арилсульфатазу, а-ман- нозидазу, N-ацетилглюкозаминидазу, p-глюкуронидазу, кислую глицеро- фосфатазу, лизоцим (мурамилидазу), нейтральные протеазы (серпроциди- ны) - катепсин G, эластазу, коллагеназу, азурацидин, а также дефензины, кателицидины, лактоферрин, гранулофизин, кислые глюкозаминоглика- ны и другие вещества. Маркерами азурофильных гранул служат фермент миелопероксидаза и мембранная молекула CD63. Желатиназные (третичные) гранулы в соответствии с названием содержат желатиназу. Наконец, четвертый тип гранул - секреторные везикулы - содержат щелочную фосфатазу.
Таблица 2.2. Свойства гранул клеток врожденного иммунитета

Тип клеток

Разновидность
гранул

Состав гранул

Функциональное назначение содержимого

Нейтрофилы

Специфические
(вторичные)

NAGPH-оксидаза, лак- тоферрин, щелочная фосфатаза, лизоцим и т.д.

Быстрая фаза бактериолиза


Азурофильные
(первичные)

Миелопероксидаза, кислые гидролазы, лизоцим, дефензины, нейтральные протеазы (серпроцидины) и т.д.

Медленная фаза бактериолиза


Желатиназные
(третичные)

Желатиназа

Обеспечение миграции


Секреторные
везикулы

Щелочная фосфатаза

Взаимодействие с микроокружением

Эозинофилы

Специфические (крупные, вторичные)

Главный основный белок, катионный белок, пероксидаза, нейротоксин, коллаге- наза, миелопероксидаза, цитокины: GM-CSF, TNFa, IL-2, IL-4, IL-6

Внеклеточный
цитолиз


Мелкие

Арилсульфатаза В, кислая фосфатаза, пероксидаза

Бактерицидность


Первичные

Лизофосфолипаза (в кристаллах Шарко -Лейдена)

Липидный метаболизм


Липидные тельца

Арахидоновая кислота, липоксигеназа, циклоксигеназа

Выработка эйкозано- идов

Тучные
клетки

Базофильные

Гистамин, протеазы, пептидогликаны, гли- козаминогликаны, протеин Шарко-Лейдена, пероксидаза

Предобразованные факторы немедленной аллергии

Окончание табл. 2.2

При стимуляции нейтрофилов в первую очередь происходит высвобождение содержимого секреторных пузырьков. Преодолевать базальные мембраны нейтрофилам позволяет секрет желатиназных гранул. Специфические, а затем азурофильные гранулы сливаются с фагосомами в процессе фагоцитоза (через 30 с и 1-3 мин после поглощения частицы соответственно). Комплекс бактерицидных факторов, присутствующих в гранулах, обеспечивает разрушение многих микроорганизмов (см. раздел 2.3.5). Наиболее эффективно содержимое гранул повреждает стрептококки, стафилококки и грибы (включая кандиды). Содержимое гранул, особенно азурофильных, может секретироваться в результате дегрануляции. После дегрануляции восстановления гранул не происходит.
Наряду с моноцитами/макрофагами нейтрофилы рассматривают как основные фагоцитирующие клетки (см. 2.3.4). При этом нейтрофилы мигрируют из крови в очаг воспаления значительно быстрее моноцитов (табл. 2.3). Скорость мобилизации нейтрофилов дополняется их способностью развивать метаболические процессы («кислородный взрыв») в течение секунд. Все это делает нейтрофилы оптимально приспособленными для осуществления ранних этапов иммунной защиты в рамках острой воспалительной реакции.
Таблица 2.3. Функциональные различия нейтрофилов и моноцитов/макрофагов

Свойство

Нейтрофилы

Моноциты/макрофаги

Сроки жизни

Короткий (3-5 сут)

Длительный (недели, месяцы)

Темп мобилизации и активации

Быстрый (минуты)

Более медленный (часы)

Длительность активации

Короткая (минуты)

Длительная (часы)

Способность к пиноцитозу

Умеренная

Высокая

Способность к фагоцитозу

Очень высокая

Высокая

Регенерация мембраны

Отсутствует

Происходит

Реутилизация фагосом

Невозможна

Возможна

Нелизосомная секреция

Отсутствует

Имеется

Fc-рецепторы

FcyII, FcyIII; при

FcyI (спонтанно), FcyII,


активации - FcyI

FcyIII