Какова причина расширения твердых и жидких тел. Тепловое расширение. Расширение твердого тела. Опыты

В первых термометрах использовалось изменение объема газа или жидкости при изменении температуры. Именно это свойство и позволило приписать любому телу определенную температуру, выражаемую числом. В этой главе мы рассмотрим, как меняются линейные размеры твердых тел, а также объемы, твердых тел и жидкостей в зависимости от температуры. О зависимости объема газа от температуры было рассказано достаточно.

§ 9.1. Тепловое расширение тел

При изменении температуры размеры тел меняются: при нагревании, как правило, увеличиваются, при охлаждении уменьшаются. Отчего это происходит?

Увеличение размеров небольшого тела невелико и его трудно заметить. Но если взять железную проволоку длиной 1,5- 2 м и нагревать ее электрическим током, то удлинение можно обнаружить на глаз без специальных приборов. Для этого один конец проволоки должен быть закреплен, а другой перекинут через блок. К этому концу надо прикрепить груз, оттягивающий проволоку вниз (рис. 9.1). По указателю, соединенному с грузом, и судят об изменении длины проволоки в процессе ее нагревания или охлаждения.

Расширение небольшого стального шара, нагретого на газовой горелке, можно заметить по его прохождению через кольцо. Холодный шар легко проходит через кольцо, а нагретый застревает в нем. Когда шар остынет, он снова проходит через кольцо.

Как же объяснить, почему тела при нагревании расширяются?

Молекулярная картина теплового расширения

Зависимость потенциальной энергии взаимодействия молекул от расстояния между ними позволяет выяснить причину возникновения теплового расширения. Как видно из рисунка 9.2, кривая потенциальной энергии сильно несимметрична. Она очень быстро (круто) возрастает от минимального значения Е р0 (в точке r 0) при уменьшении г и сравнительно медленно растет при увеличении r .

При абсолютном нуле в состоянии равновесия молекулы находились бы друг от друга на расстоянии r 0 , соответствующем минимальному значению потенциальной энергии Е р0 . По мере нагревания молекулы начинают совершать колебания около положения равновесия. Размах колебаний определяется средним значением энергии Е. Если бы потенциальная кривая была симметричной, то среднее положение молекулы по-прежнему соответствовало бы расстоянию r 0 . Это означало бы общую неизменность средних расстояний между молекулами при нагревании и, следовательно, отсутствие теплового расширения. На самом деле кривая несимметрична. Поэтому при средней энергии, равной , среднее положение колеблющейся молекулы соответствует расстоянию r 1 > r 0 .

Изменение среднего расстояния между двумя соседними молекулами означает изменение расстояния между всеми молекулами тела. Поэтому размеры тела увеличиваются.

Дальнейшее нагревание тела приводит к увеличению средней энергии молекулы до некоторого значения , и т. д. При этом увеличивается и среднее расстояние между молекулами, так как теперь колебания совершаются с большей амплитудой вокруг нового положения равновесия: r 2 > r 1 , r 3 > r 2 и т. д.

При нагревании тела среднее расстояние между колеблющимися молекулами увеличивается, поэтому увеличиваются и размеры тела.

ПРИТЕРТЫЕ ПРОБКИ

Всем хорошо известно, что при нагревании тела расширяются.
Иногда в стеклянном флаконе притертая пробка так туго сидит, что ее не вытащишь. Очень большое усилие применить опасно — можно отломить горлышко и порезать руки. Поэтому прибегают к испытанному способу: к горлышку подносят горящую спичку, а флакон поворачивают, чтобы горлышко равномерно прогрелось.


Пламени одной спички достаточно, чтобы стекло горлышка от нагревания расширилось, а пробка, не успевшая нагреться, легко вынулась.

УДЛИНЕНИЕ ИГОЛКИ

Вырежь из пробки, из дощечки или выпили из фанеры такую дужку, как у нас на рисунке. Иглу воткни острием в целый конец дужки (на рисунке — левый), а ушком свободно положи на правый, срезанный. Подбери другую иголку, потоньше. Ее острие должно пройти сквозь ушко первой, горизонтальной иглы да еще войти в дерево на 2— 3 мм.

Эта вертикальная игла будет стрелкой нашего приборчика. Чтобы ее движение было заметнее, рядом воткни вторую, контрольную.

Контрольная иголка должна быть параллельна иголке-стрелке.
Нагрей теперь горизонтальную иглу на свече или спичке.
Она удлинится, ушко поползет вправо и отклонит вертикальную стрелку!


ТЕПЛОВЫЕ ВЕСЫ

Опыт 1

Для этого возьмите прямой кусок медной проволоки толщиной 1—2 миллиметра, длиной около 40 сантиметров. Воткните конец этой проволоки в отверстие, просверленное в деревянной палке примерно такой же длины, и подвесьте получившееся коромысло тепловых весов за середину на нитке. Уравновесьте его.


Может быть, для этого нужно будет подрезать деревянную палочку или, наоборот, подвесить к ней небольшой груз, например кусочки бумаги. Можно добиться равновесия и передвигая точку подвеса коромысла. Осветите коромысло настольной лампой, чтобы на стене один его конец, например медный, давал тень. На этом месте укрепите на стене белую бумагу и отметьте карандашом положение тени, когда коромысло висит строго горизонтально. Затем возьмите две зажженные свечи и подставьте их под медную проволоку. Когда она хорошо нагреется, она удлинится, и равновесие нарушится. Потому что нарушилось соотношение плеч. Конец проволоки опустится на несколько миллиметров. Это будет хорошо видно по тени на стене.

Если свечи убрать, медная проволока остынет, станет короче, то есть такой, какой была до нагревания, и коромысло наших тепловых весов, вернее, его тень встанет на свою метку.

Опыт 2

Красивый опыт можно сделать со стальной вязальной спицей.
Пропусти ее сквозь пробку (или обрезок моркови). По обе стороны спицы воткни в эту пробку две булавки, как показано на рисунке. Они должны стоять острыми концами на донышке стакана.


На концы спицы насади по морковке. Лучше не серединкой, а так, чтобы основная часть каждой морковки была внизу. Это сделает равновесие спицы более устойчивым: ведь центр тяжести опустился ниже! Получилось что-то вроде весов, Передвигая морковки, добейся, чтобы спица стояла совершенно горизонтально.

Получилось?
Ну, а теперь поставь под одно плечо этих весов зажженную свечу.
Внимание… Смотри-ка: нагретое плечо опустилось! Убери свечу — и через некоторое время равновесие восстановится.

В чем здесь дело?
Неужели одна сторона спицы от нагревания стала тяжелее? Нет, конечно. Просто она стала длиннее, и морковка «отъехала» дальше от точки опоры. Поэтому она и перетянула, как птичка перетягивала бегемота! А когда спица остыла, она снова укоротилась, и все стало по-прежнему.


РАЗЪЕДИНЕНИЕ СТАКАНОВ

Все тела при нагревании расширяются, а при охлаждении сжимаются - закон!
Дома мы то и дело сталкиваемся с проявлениями коварного закона: то треснет стакан, в который налили кипяток, то сожмет давлением завинчивающуюся крышку на банке так, что и не открыть, то лопнут от сильного мороза водопроводные трубы (в последнем примере речь идет о «неправильном» поведении воды, ведь она расширяется и при замерзании).
Но лучше с этим законом дружить!


Опыт

Как разъединить два стакана, вставленные один в другой?

Вчера их вымыли горячей водой да так и оставили. И они «схватились» так, что скорее разобьются, чем разделятся. Налейте в верхний стакан холодной воды, а второй опустите в миску с горячей водой. Несколько мгновений — и жестом фокусника вы их разделите.

РЖАВЫЙ ВИНТ

Шляпку заржавевшего винта, который никак не поддается отвертке, нагрейте паяльником. Дайте винту остыть и повторите попытку.

От резкого расширения, а затем сжатия частицы ржавчины и других посторонних веществ на поверхности резьбы должны отделиться. Если это не поможет сразу, повторите нагрев.

ДОСКА ВДРЕБЕЗГИ

Если вы хотели бы продемонстрировать свою силу, то есть показать, как под ребром вашей ладони разлетается в щепки толстая доска, выдаем тайну одного циркового артиста: перед выступлением он вымачивал подготовленную доску в воде и выставлял ее на мороз. Потом давал оттаять, снова мочил и опять замораживал. И так несколько раз.

Как вы догадываетесь, замерзающая вода рвала древесные клетки, и доска становилась рыхлой, некрепкой. Разломать ее резким ударом ладони нетрудно. Впрочем, обманывать нехорошо…
Кстати, что надо сделать с бубликом, чтобы увеличить его дырку?

РАСШИРЕНИЕ ШАРИКА

Проделаем опыт с расширением от нагревания твердого предмета. Хорошо бы найти металлический шарик от бильярда или от шарикового подшипника. По его размеру подыщите какую-нибудь металлическую пластинку с отверстием. Если диаметр отверстия меньше шарика, круглым напильником расширьте его.


Добейтесь, чтобы шарик, если его положить на отверстие, проваливался, не задерживаясь в нем. Но и зазора между шариком и отверстием не должно быть. Положите шарик на горячую плиту. Если плита газовая, то положите на металлический кружок, который есть у каждой хозяйки для предохранения некоторых блюд от подгорания. Когда шарик хорошо нагреется, возьмите его плоскогубцами и быстро положите на отверстие в пластинке, заранее укрепленной над металлической коробочкой. Шарик от нагревания увеличится в размере и в отверстии будет держаться до тех пор, пока не остынет. Когда остынет, сам проскочит сквозь него.

РАСШИРЕНИЕ МОНЕТЫ

Нагрейте монету и снова попробуйте ее пропустить между пластинками. У вас ничего не получится до тех пор, пока монета не остынет и не примет прежние размеры.


Еще проще можно проделать опыт при помощи двух гвоздей, забитых в дощечку Расстояние между гвоздями должно равняться диаметру неразогретого пятачка.

Провода летом провисают намного силь­нее, чем зимой, т. е. летом они длиннее. Если набрать полную бу­тылку холодной воды и поставить в теплое место, то со временем часть воды из бутылки выльется, так как во время нагревания вода расширяется. Воздушный шарик, вынесенный из комнаты на мороз, уменьшается в объеме.

1. Убеждаемся в тепловом расширении твердых тел, жидкостей и газов

Несложные опыты и многочисленные на­блюдения убеждают нас в том, что, как прави­ло, твердые тела, жидкости и газы во время нагревания расширяются, а во время охлажде­ния сжимаются.

Тепловое расширение жидкостей и газов лег­ко наблюдать с помощью колбы, шейка которой плотно закупорена, а в пробку вставлена стек­лянная трубка. Перевернем колбу, заполненную воздухом, в сосуд с водой.

Теперь достаточно взяться за колбу рукой, и в скором времени воз­дух, расширяясь в колбе, будет выходить в виде пузырьков из трубки под водой (рис. 2.30).

Теперь наполним колбу какой-нибудь подкра­шенной жидкостью и закупорим так, чтобы часть жидкости вошла в трубку (рис. 2.31, а). Обозна­чим уровень жидкости в трубке и опустим колбу в сосуд с горячей водой. В первый момент уровень жидкости немного снизится (рис. 2.31, б), и это можно объяснить тем, что сначала нагревается и расширяется колба, а уже потом, нагреваясь, расширяется вода.

Рис. 2.30. При нагревании воз­дух в колбе расширяется и часть его выходит из колбы - это видно по пузырькам воздуха, выходящим из трубки


Рис. 2.31 Опыт, демонстрирующий, что при нагревании жидкость (как твердые тела и газы) расширяется: а - закрытая пробкой колба с жидкостью в трубке; б - в первый момент нагрева­ния уровень жидкости немного снижается; в - при дальнейшем нагревании уровень жидкости значительно повышается

В скором времени мы убедим­ся, что по мере нагревания колбы и воды в ней уровень жидкости в трубке заметно повысится (рис. 2.31, в). Итак, твердые тела и жидкости, как и газы, во время нагревания расширяются. Исследовательским путем выяснено, что твердые тела и жидкости во время нагревания расширяются намного меньше, чем газы.

Тепловое расширение твердых тел можно продемонстрировать также на следующем опы­те. Возьмем медный шарик, который в ненагре­том состоянии легко проходит сквозь пригнан­ное к нему кольцо. Нагреем шарик в пламени спиртовки и убедимся в том, что шарик теперь не будет проходить сквозь кольцо (рис. 2.32, а). После охлаждения шарик снова легко пройдет сквозь кольцо (рис. 2.32, б).

2. Выясняем причину теплового расширения

В чем же причина увеличения объема тел во время нагревания, ведь количество молекул с увеличением температуры не изменяется?

Атомно-молекулярная теория объясняет теп­ловое расширение тел тем, что с увеличением температуры увеличивается скорость движения атомов и молекул. В результате увеличивается среднее расстояние между атомами (молекулами).


Рис. 2.32. Опыт, иллюстрирую­щий тепловое расширение твер­дых тел: а - в нагретом состоя­нии шарик не проходит сквозь кольцо; б - после охлаждения шарик проходит сквозь кольцо

Соответственно, увеличивает­ся объем тела. И наоборот, чем ниже температура вещества, тем меньше межмолекулярные промежутки. Исключением является вода, чугун и некоторые дру­гие вещества. Вода, например, расширяется только при температуре выше 4 °С; при температуре от О 0C до 4 0C объем воды во время нагревания уменьшается.

3. Характеризуем тепловое расширение твердых тел

Выясним, как изменяются линейные размеры твердого тела вследствие изменения температуры . Для этого измерим длину алюминиевой трубки, по­том нагреем трубку, пропуская сквозь нее горячую воду. Спустя некоторое время можно заметить, что длина трубки незначительно увеличилась.

Заменив алюминиевую трубку стеклянной такой же длины, мы убедим­ся, что в случае одинакового увеличения температуры длина стеклянной трубки увеличивается намного меньше, чем длина алюминиевой. Таким об­разом, делаем вывод: тепловое расширение тела зависит от вещества, из которого оно изготовлено.

Физическая величина , характеризующая тепловое расширение материала и численно равная отношению изменения длины тела вследствие его нагрева­ния на I °С и его начальной длины, называется температурным коэффициен­том линейного расширения.

Температурный коэффициент линейного расширения обозначается сим­волом а и вычисляется по формуле:


Из определения температурного коэффициента линейного расширения можно получить единицу этой физической величины:

Ниже в таблице приведены температурные коэффициенты линейного расширения некоторых веществ.

4. Знакомимся с тепловым расширением в природе и технике

Способность тел расширяться во время нагревания и сжиматься во время охлажде­ния играет очень важную роль в природе. По­верхность Земли прогревается неравномерно. В результате воздух вблизи Земли также рас­ширяется неравномерно, и образуется ветер, предопределяющий изменение погоды. Нерав­номерное прогревание воды в морях и океанах приводит к возникновению течений, которые существенно влияют на климат. Резкие коле­бания температуры в горных районах вызыва­ют расширение и сжатие горных пород. А по­скольку степень расширения зависит от вида породы, то расширения и сжатия происходят неравномерно, и в результате образуются тре­щины, которые приводят к разрушению этих пород.

Тепловое расширение приходится прини­мать во внимание при строительстве мостов и линий электропередач, прокладывании труб отопления, укладке железнодорожных рельсов, изготовлении железобетонных конструк­ций и во многих других случаях.

Явление теплового расширения широко ис­пользуется в технике и быту. Так, для авто­матического замыкания и размыкания элект­рических цепей используют биметаллические пластинки - они состоят из двух полос с раз­ным коэффициентом линейного расширения (рис. 2.33). Тепловое расширение воздуха по­могает равномерно прогреть квартиру, охла­дить продукты в холодильнике , проветрить комнату.

Рис. 2.33. Для изготовления авто­матических предохранителей (а), для автоматического включения и выключения нагревательных приборов (б) широко используют­ся биметаллические пластинки (в). Один из металлов при увеличении температуры расширяется намно­го больше, чем другой, в результа­те этого пластинка изгибается (г) и размыкает­ся (или замыкается)

5. Учимся решать задачи

Длина стального железнодорожного рельса при температуре О о C равна 8 г. На сколько увеличится его длина в зной­ный летний день при температуре 40 °С?

Анализ условия задачи. Зная, как изменя­ется длина стальной детали вследствие нагре­вания на 1 °С, т. е. зная температурный ко­эффициент линейного расширения стали, мы найдем, на сколько изменится длина рельса вследствие нагревания на 40 °С. Температурный коэффициент линейного расширения стали найдем по таб­лице, приведенной выше.


  • Подводим итоги

Твердые тела, жидкости и газы во время нагревания, как правило, расширяются. Причина теплового расширения в том, что с увеличением температуры увеличивается скорость движения атомов и молекул. В ре­зультате увеличивается среднее расстояние между атомами (молекулами). Тепловое расширение твердых веществ характеризуется коэффициентом ли­нейного расширения. Коэффициент линейного расширения численно равен отношению изменения длины тела вследствие нагревания его на 1 о C и его начальной длины

  • Контрольные вопросы

1. Приведите примеры, подтверждающие, что твердые тела, жидкос­ти и газы расширяются во время нагревания.

2. Опишите опыт, де­монстрирующий тепловое расширение жидкостей.

3. В чем причина увеличения объема тел во время нагревания?

4. От чего, кроме тем­пературы, зависит изменение размеров тел во время их нагревания (охлаждения)?

5. В каких единицах измеряется коэффициент ли­нейного расширения?

  • Упражнения

1. Выберите все правильные ответы. Когда тело охлаждается, то:

а) скорость движения его молекул уменьшается;
б) скорость движения его молекул увеличивается;
в) расстояние между его молекулами уменьшается;
г) расстояние между его молекулами увеличивается.

2. Как изменится объем воздушного шарика, если мы перенесем его из холодного помещения в теплое? Почему?
3. Что происходит с расстояниями между частичками жидкости в тер­мометре в случае похолодания?
4. Правильным ли является утверждение, что во время нагревания тело увеличивает свои размеры, так как размеры его молекул уве­личиваются? Если нет, предложите свой, исправленный, вариант.
5 . Зачем на точных измерительных приборах указывают темпера­туру?
6. Вспомните опыт с медным шариком, который вследствие нагрева­ния застревал в кольце (см. рис. 2.32). Как изменились вследствие нагревания: объем шара; его масса; плотность; средняя скорость движения атомов?
7. После того как пар кипящей воды пропустили через латунную трубку, длина трубки увеличилась на 1,62 мм. Чему равен коэффи­циент линейного расширения латуни, если при температуре 15 0C
длина трубки равна 1 м? Напоминаем, что температура кипящей воды равна 100 °С.
8. Платиновый провод длиной 1,5 м находился при температуре 0 °С. Вследствие пропускания электрического тока провод раскалился и удлинился на 15 мм. До какой температуры он был нагрет?
9. Медный лист прямоугольной формы, размеры которого при темпе­ратуры 20 0C составляют 60 см х 50 см, нагрели до 600 °С. Как из­менилась площадь листа?

  • Экспериментальные задания

1. Как, имея дощечку, молоток, два гвоздика, спиртовку и пинцет, показать, что размер монеты в 5 копеек во время нагревания уве­личивается? Выполните соответствующий опыт. Объясните наблю­даемое явление.

2. Наполните бутылку водой так, чтобы внутри остался пузырек воз­духа. Нагрейте бутылку в горячей воде. Проследите, как изменят­ся размеры пузырька. Объясните результат..

Физика. 7 класс: Учебник / Ф. Я. Божинова, Н. М. Кирюхин, Е. А. Кирюхина. - X.: Издательство «Ранок», 2007. - 192 с.: ил.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации

Изменение размеров твердых тел вследствие теплового расширения приводит к появлению огромных сил упругости, если другие тела препятствуют этому изменению размеров. Например, стальная мостовая балка сечением 100 см 2 при нагревании от -40 °С зимой до +40 °С летом, если опоры препятствуют ее удлинению, создает давление на опоры (напряжение) до 1,6 10 8 Па, т. е. действует на опоры с силой 1,6 10 6 Н.

Приведенные значения могут быть получены из закона Гука и формулы (9.2.1) для теплового расширения тел.

Согласно закону Гука механическое напряжение ,где - относительное удлинение, a Е - модуль Юнга. Согласно (9.2.1) . Подставляя это значение относительного удлинения в формулу закона Гука, получим

У стали модуль Юнга Е = 2,1 10 11 Па, температурный коэффициент линейного расширения α 1 = 9 10 -6 К -1 . Подставив эти данные в выражение (9.4.1), получим, что при Δt = 80 °С механическое напряжение σ = 1,6 10 8 Па.

Так как S = 10 -2 м 2 , то сила F = σS = 1,6 10 6 Н.

Для демонстрации сил, появляющихся при охлаждении металлического стержня, можно проделать следующий опыт. Нагреем железный стержень с отверстием на конце, в которое вставлен чугунный стерженек (рис. 9.5). Затем вставим этот стержень в массивную металлическую подставку с пазами. При охлаждении стержень сокращается, и в нем возникают столь большие силы упругости, что чугунный стерженек ломается.

Тепловое расширение тел нужно учитывать при конструировании многих сооружений. Необходимо принимать меры для того, чтобы тела могли свободно расширяться или сжиматься при изменении температуры.

Нельзя, например, туго натягивать телеграфные провода, а также провода линий электропередачи (ЛЭП) между опорами. Летом провисание проводов заметно больше, чем зимой.

Металлические паропроводы, а также трубы водяного отопления приходится снабжать изгибами (компенсаторами) в виде петель (рис. 9.6).

Внутренние напряжения могут возникать при неравномерном нагревании однородного тела. Например, стеклянная бутылка или стакан из толстого стекла могут лопнуть, если налить в них горячей воды. В первую очередь происходит нагрев внутренних частей сосуда, соприкасающихся с горячей водой. Они расширяются и оказывают сильное давление на внешние холодные части. Поэтому может произойти разрушение сосуда. Тонкий же стакан не лопается при наливании в него горячей воды, так как его внутренняя и внешняя части одинаково быстро прогреваются.

Очень малый температурный коэффициент линейного расширения имеет кварцевое стекло. Такое стекло выдерживает, не трескаясь, неравномерное нагревание или охлаждение. Например, в раскаленную докрасна колбочку из кварцевого стекла можно вливать холодную воду, тогда как колба из обычного стекла при таком опыте лопается.

Разнородные материалы, подвергающиеся периодическому нагреванию и охлаждению, следует соединять вместе только тогда, когда их размеры при изменении температуры меняются одинаково. Это особенно важно при больших размерах изделий. Так, например, железо и бетон при нагревании расширяются одинаково. Именно поэтому широкое распространение получил железобетон - затвердевший бетонный раствор, залитый в стальную решетку - арматуру (рис. 9.7). Если бы железо и бетон расширялись по-разному, то в результате суточных и годовых колебаний температуры железобетонное сооружение вскоре бы разрушилось.

Еще несколько примеров. Металлические проводники, впаянные в стеклянные баллоны электроламп и радиоламп, делают из сплава (железа и никеля), имеющего такой же коэффициент расширения, как и стекло, иначе при нагревании металла стекло треснуло бы. Эмаль, которой покрывают посуду, и металл, из которого эта посуда изготовляется, должны иметь одинаковый коэффициент линейного расширения. В противном случае эмаль будет лопаться при нагревании и охлаждении покрытой ею посуды.

Значительные силы могут развиваться и жидкостью, если нагревать ее в замкнутом сосуде, не позволяющем жидкости расширяться. Эти силы могут привести к разрушению сосудов, в которых содержится жидкость. Поэтому с этим свойством жидкости тоже приходится считаться. Например, системы труб водяного отопления всегда снабжаются расширительным баком, присоединенным к верхней части системы и сообщающимся с атмосферой. При нагревании воды в системе труб небольшая часть воды переходит в расширительный бак, и этим исключается напряженное состояние воды и труб. По этой же причине в силовом трансформаторе с масляным охлаждением наверху имеется расширительный бак для масла. При повышении температуры уровень масла в баке повышается, при охлаждении масла - понижается.

Изменение размеров или объема тела при нагревании

Анимация

Описание

Тепловым расширением называется эффект изменения размеров тела с изменением температуры при постоянном давлении. Это явление для твердых тел обусловлено несимметричностью потенциала взаимодействия атомов вещества в решетке, что приводит к ангармонизму колебаний атомов относительно среднего положения. Для газов это обусловлено увеличением кинетической энергии молекул и атомов.

Количественно тепловое расширение при постоянном давлении Р характеризуется изобарным коэффициентом расширения (объемного или линейного).

Коэффициент объемного расширения a определяется как относительное изменение объема V при нагревании тела (твердого, жидкого или газообразного) на 1 К.

здесь Т - абсолютная температура тела.

Практическое значение a вычисляется по формуле:

где V 1 , V 2 - объемы тела при температурах Т 1 и Т 2 , соответственно (Т 1 <Т 2 ).

Для характеристики теплового расширения наряду с a используется коэффициент линейного расширения a L :

где l - размер тела в данном направлении.

В общем случае поликристаллических анизотропных тел, состоящих из анизотропных монокристаллов, a L =a x +a y +a z , причем различие или равенство линейных коэффициентов теплового расширения a x , a y , a z вдоль кристаллографических осей х, у, z определяется симметрией кристалла. Например, для кристаллов кубической системы, так же как и для изотропных тел a L = a x = a y = a z и a = 3a л . Для большинства тел a >0, но существуют и аномалии. Например, вода при нагреве от 0 до 40 С в условиях нормального атмосферного давления сжимается (a <0). Зависимость a (Т ) наиболее заметна у газов (для идеального газа a =1/Т ); у жидкостей она проявляется слабее. У ряда веществ в твердом состоянии (кварца, инвара и т.д.) коэффициент a мал и практически постоянен в широком интервале температур. При Т ® 0, a® 0. Коэффициент a и a L определяются экспериментальными методами.

Временные характеристики

Время инициации (log to от -1 до 3);

Время существования (log tc от 0 до 6);

Время деградации (log td от -1 до 3);

Время оптимального проявления (log tk от 3 до 5).

Диаграмма:

Технические реализации эффекта

Термометр

Реализация данного эффекта не требует никаких дополнительных средств, кроме обычного бытового спиртового или ртутного термометра. При его нагревании столбик жидкости растет, что и означает объемное расширение жидкости.

Применение эффекта

Данный эффект широко используется при проектировании технических систем, работающих в экстремальных или оптимальных термоусловиях с большими перепадами температур. Аномальное свойство воды уменьшаться в объеме при увеличении температуры от 0 до 40 С с одной стороны является вредным, приводящим к размораживанию "гидросистем", т.е. их механическому разрушению, а с другой стороны является основой для ряда технологических процессов, например, разрушение горных пород. Кроме того в технических устройствах широко используется так называемые биметаллические пластины как датчики предельных температур, приводящих к автоматическому включению выключению бытовых электроустройств (утюгов, пылесосов, холодильников и т.д.).