Математика, которая мне нравится. Великая теорема ферма Теории которые не доказаны

- » Задачи человечества

ЗАДАЧИ МАТЕМАТИКИ, НЕ РЕШЕННЫЕ ЧЕЛОВЕЧЕСТВОМ

Задачи Гильберта

23 важнейших проблем математики были представлены величайшим немецким математиком Давидом Гильбертом на Втором Международном конгресе математиков в Париже в 1990 году. Тогда эти проблемы (охватывающие основания математики, алгебру, теорию чисел, геометрию, топологию, алгебраическую геометрию, группы Ли, вещественный и комплексный анализ, дифференциальные уравнения, математическую физику, вариационное исчисление и теорию вероятностей, не были решены. На данный момент решены 16 проблем из 23. Ещё 2 не являются корректными математическими проблемами (одна сформулирована слишком расплывчато, чтобы понять, решена она или нет, другая, далёкая от решения, — физическая, а не математическая). Из оставшихся 5 проблем две не решены никак, а три решены только для некоторых случаев

Задачи Ландау

До сих пор существует много открытых вопросов, связанных с простыми числами (простое число - это число, которое имеет отлько два делителя: единицу и само это число). Наиболее важные вопросы были перечислены Эдмундом Ландау на Пятом Междунанародном математическом конгресе:

Первая проблема Ландау (проблема Гольдбаха): верно ли, что каждое чётное число, большее двух, может быть представлено в виде суммы двух простых чисел, а каждое нечётное число, большее 5, может быть представлено в виде суммы трёх простых чисел?

Вторая проблема Ландау : бесконечно ли множество «простых близнецов» — простых чисел, разность между которыми равна 2?
Третья проблема Ландау (гипотеза Лежандра): верно ли, что для всякого натурального числа n между и всегда найдётся простое число?
Четвёртая проблема Ландау : бесконечно ли множество простых чисел вида , где n — натуральное число?

Задачи тысячелетия (Millennium Prize Problems)

Это семь математических задач, з а решение каждой из которых инcтитут Клея предложил приз в 1 000 000 долларов США. Вынося на суд математиков эти семь задач, иститут Клея сравнил их с 23 задачами Д.Гильберта, которые оказали большое влияние на на математику ХХ века. Из 23 проблем Гильберта большинство уже решены, и только одна — гипотеза Римана — вошла в список задач тысячелетия. По состоянию на декабрь 2012 года только одна из семи проблем тысячелетия (гипотеза Пуанкаре) решена. Приз за её решение присуждён российскому математику Григорию Перельману, который от него отказался.

Вот список этих семи задач :

№1. Равенство классов P и NP

Если положительный ответ на какой-то вопрос можно быстро проверить (используя некоторую вспомогательную информацию, называемую сертификатом), то верно ли, что и сам ответ (вместе с сертификатом) на этот вопрос можно быстро найти? Задачи первого типа относятся к классуц NP, второго — классу Р. Проблема равенства этих классов является одной из важнейших проблем теории алгоритмов.

№2. Гипотеза Ходжа

Важная проблема алгебраической геометрии. Гипотеза описывает классы комогологий на комплексных проективных многообразиях, реализуемые алгебраическими подмногообразиями.

№3. Гипотеза Пуанкаре (доказана Г.Я.Перельманом)

Cчитается наиболее известной проблемой топологии. Говоря более просто, она утверждает, что всякий 3D «объект», обладающий некоторыми свойствами трёхмерной сферы (например, каждая петля внутри него должна быть стягиваема), обязан быть сферой с точностью до деформации. Премия за доказательство гипотезы Пуанкаре присуждена российскому математику Г.Я.Перельману, опубликовавшему в 2002 году серию работ, из которых следует справедливость гипотезы Пуанкаре.

№4. Гипотеза Римана

Гипотеза гласит, что все нетривиальные (то есть имеющие ненулевую мнимую часть) нули дзета-функции Римана имеют действительную часть 1/2. Гипотеза Римана была восьмой в списке проблем Гильберта.

№5. Теория Янга — Миллса

Задача из области физики элементарных частиц. Требуется доказать, что для любой простой компактной калибровочной группы G квантовая теория Янга — Миллса для четырехмарного пространства существует и имеет ненулевой дефект массы. Это утверждение соответствует экспериментальным данным и численному моделированию, однако доказать его до сих пор не удалось.

№6. Существование и гладкость решений уравнений Навье — Стокса

Уравнения Навье — Стокса описывают движение вязкой жидкости. Одна из важнейших задач гидродинамики.

№7. Гипотеза Бёрча — Свиннертон-Дайера

Гипотеза связана с уравнениями эллиптических кривых и множеством их рациональных решений.

Иногда усердное изучение точных наук может принести свои плоды - вы станете не только известны на весь мир, но и богаты. Награды даются, впрочем, не за что попало, и в современной науке очень много недоказанных теорий, теорем и задач, которые плодятся по мере развития наук, взять хотя бы Коуровские или Днестровские тетради, этакие сборники с неразрешимыми физико-математическими, и не только, задачами. Однако есть и поистине сложные теоремы, которые не могут разгадать уже не один десяток лет, и вот за них то и выставлена награда американским институтом Клэя в размере 1 млн. долларов США за каждую. До 2002 года общий джекпот равнялся 7 миллионам, так как «задач тысячелетия» было семь, однако российский математик Григорий Перельман решил гипотезу Пуанкаре, эпически отказавшись от миллиона, даже не открыв дверь математикам США, которые хотели вручить ему его честно заработанные премиальные. Итак, включаем Теорию Большого Взрыва для фона и настроения, и смотрим, за что еще можно срубить круглую сумму.

Равенство классов P и NP

Простыми словами говоря, проблема равенства P = NP состоит в следующем: если положительный ответ на какой-то вопрос можно довольно быстро проверить (за полиномиальное время), то правда ли, что ответ на этот вопрос можно довольно быстро найти (также за полиномиальное время и используя полиномиальную память)? Другими словами, действительно ли решение задачи проверить не легче, чем его отыскать? Суть здесь в том, что некоторые расчеты и вычисления легче решать по алгоритму, а не вычислять перебором, и таким образом экономить кучу времени и ресурсов.

Гипотеза Ходжа

Гипотеза Ходжа сформулирована в 1941 году и состоит в том, что для особенно хороших типов пространств, называемых проективными алгебраическими многообразиями, так называемые циклы Ходжа являются комбинациями объектов, имеющих геометрическую интерпретацию, — алгебраических циклов.

Здесь объясняя простыми словами можно сказать следующее: в 20 веке были открыты очень сложные геометрические формы, типа искривленных бутылок. Так вот, было высказано предположение, что чтобы сконструировать эти объекты для описания, надо применять совсем головоломные формы, которые не имеют геометрической сути «этакие страшные многомерные каляки-маляки» или же все - таки можно обойтись условно-стандартной алгеброй+геометрией.

Гипотеза Римана

Здесь человеческим языком объяснить довольно сложно, достаточно знать, что решение данной проблемы будет иметь далеко идущие последствия в области распределения простых чисел. Проблема настолько важна и насущна, что даже выведение контрпримера гипотезы - на усмотрение ученого совета университета, проблему можно будет считать доказанной, так что здесь можно попробовать и метод «от обратного». Даже если удастся переформулировать гипотезу в более узком смысле - и тут институт Клэя выплатит некоторую сумму денег.

Теория Янга — Миллса

Физика элементарных частиц - один из любимых разделов доктора Шелдона Купера. Тут квантовая теория двух умных дядек говорит нам о том, что для любой простой калибровочной группе в пространстве существует дефект массы отличный от нулевого. Это утверждение установлено экспериментальными данными и численному моделированию, однако доказать его пока никто не может.

Уравнения Навье-Стокса

Здесь нам наверняка бы помог Говард Воловиц, если бы существовал в реальности - ведь это загадка из гидродинамики, причем основа основ. Уравнения описывают движения вязкой ньютоновской жидкости, имеют огромное практическое значение, а главное описывают турбулентность, которую никак не удается загнать в рамки науки и предугадать ее свойства и действия. Обоснование построения этих уравнений позволило бы не тыкать пальцем в небо, а понять турбулентность изнутри и сделать самолеты и механизмы более устойчивыми.

Гипотеза Бёрча — Свиннертон-Дайера

Здесь я, правда, пытался подобрать простые слова, однако тут такая дремучая алгебра, что без глубокого погружения не обойтись. Тем же, кто не хочет нырять с аквалангом в матан, надо знать, что данная гипотеза позволяет быстро и безболезненно находить ранг эллиптических кривых, а если бы этой гипотезы не было, то для вычисления этого ранга нужна была бы простыня вычислений. Ну и естественно также надо знать, что доказательство этой гипотезы обогатит вас на миллион долларов.

Нельзя не отметить, что почти в каждой области есть уже продвижения, и даже доказаны случаи для отдельных примеров. Поэтому не стоит медлить, а то получится как с теоремой Ферма, которая поддалась Эндрю Уайлсу через 3 с лишним века в 1994 году, и принесла ему Абелевскую премию и около 6 млн. норвежских крон (50 миллионов рублей по сегодняшнему курсу).

Интерес к математике обозначился у Ферма как-то неожиданно и в достаточно зрелом возрасте. В 1629 г. в его руки попадает латинский перевод работы Паппа, содержащий краткую сводку результатов Аполлония о свойствах конических сечений. Ферма, полиглот, знаток права и античной филологии, вдруг задается целью полностью восстановить ход рассуждений знаменитого ученого. С таким же успехом современный адвокат может попытаться самостоятельно воспроизвести все доказательства по монографии из проблем, скажем, алгебраической топологии. Однако, немыслимое предприятие увенчивается успехом. Более того, вникая в геометрические построения древних, он совершает удивительное открытие: для нахождения максимумов и минимумов площадей фигур не нужны хитроумные чертежи. Всегда можно составить и решить некое простое алгебраическое уравнение, корни которого определяют экстремум. Он придумал алгоритм, который станет основой дифференциального исчисления.

Он быстро продвинулся дальше. Он нашел достаточные условия существования максимумов, научился определять точки перегиба, провел касательные ко всем известным кривым второго и третьего порядка. Еще несколько лет, и он находит новый чисто алгебраический метод нахождения квадратур для парабол и гипербол произвольного порядка (то есть интегралов от функций вида y p = Cx q и y p x q = С ), вычисляет площади, объемы, моменты инерции тел вращения. Это был настоящий прорыв. Чувствуя это, Ферма начинает искать общения с математическими авторитетами того времени. Он уверен в себе и жаждет признания.

В 1636 г. он пишет первое письмо Его преподобию Марену Мерсенну: ”Святой отец! Я Вам чрезвычайно признателен за честь, которую Вы мне оказали, подав надежду на то, что мы сможем беседовать письменно; ...Я буду очень рад узнать от Вас о всех новых трактатах и книгах по Математике, которые появилась за последние пять-шесть лет. ...Я нашел также много аналитических методов для различных проблем, как числовых, так и геометрических, для решения которых анализ Виета недостаточен. Всем этим я поделюсь с Вами, когда Вы захотите, и притом без всякого высокомерия, от которого я более свободен и более далек, чем любой другой человек на свете.”

Кто такой отец Мерсенн? Это францисканский монах, ученый скромных дарований и замечательный организатор, в течении 30 лет возглавлявший парижский математический кружок, который стал подлинным центром французской науки. В последствии кружок Мерсенна указом Людовика XIV будет преобразован в Парижскую академию наук. Мерсенн неустанно вел огромную переписку, и его келья в монастыре ордена минимов на Королевской площади была своего рода “почтамтом для всех ученых Европы, начиная от Галилея и кончая Гоббсом”. Переписка заменяла тогда научные журналы, которые появились значительно позже. Сборища у Мерсенна происходили еженедельно. Ядро кружка составляли самые блестящие естествоиспытатели того времен: Робервиль, Паскаль-отец, Дезарг, Мидорж, Арди и конечно же, знаменитый и повсеместно признанный Декарт. Рене дю Перрон Декарт (Картезий), дворянская мантия, два родовых поместья, основоположник картезианства, “отец” аналитической геометрии, один из основателей новой математики, а так же друг и товарищ Мерсенна по иезуитскому колледжу. Этот замечательный человек станет кошмаром для Ферма.

Мерсенн счел результаты Ферма достаточно интересными, чтобы ввести провинциала в свой элитный клуб. Ферма тут же завязывает переписку со многими членами кружка и буквально засыпает письмами самого Мерсенна. Кроме того, он отсылает на суд ученых мужей законченные рукописи: “Введение к плоским и телесным местам”, а год спустя - “Способ отыскания максимумов и минимумов” и “Ответы на вопросы Б. Кавальери”. То, что излагал Ферма, была абсолютная новь, однако сенсация не состоялась. Современники не содрогнулись. Они мало, что поняли, но зато нашли однозначные указание на то, что идею алгоритма максимизации Ферма заимствовал из трактата Иоханнеса Кеплера с забавным названием “Новая стереометрия винных бочек”. Действительно, в рассуждения Кеплера встречаются фразы типа “Объем фигуры наибольший, если по обе стороны от места наибольшего значения убывание сначала нечувствительно”. Но идея малости приращения функции вблизи экстремума вовсе не носилась в воздухе. Лучшие аналитические умы того времени были не готовы к манипуляциям с малыми величинами. Дело в том, что в то время алгебра считалась разновидностью арифметики, то есть математикой второго сорта, примитивным подручным средством, разработанным для нужд низменной практики (“хорошо считают только торговцы”). Традиция предписывала придерживаться сугубо геометрических методов доказательств, восходящих к античной математике. Ферма первый понял, что бесконечно малые величины можно складывать и сокращать, но довольно затруднительно изображать в виде отрезков.

Понадобилось почти столетие, чтобы Жан д’Аламбер в знаменитой “Энциклопедии” признал: “Ферма был изобретателем новых исчислений. Именно у него мы встречаем первое приложение дифференциалов для нахождения касательных”. В конце XVIII века еще более определенно выскажется Жозеф Луи граф де Лагранж: “Но геометры - современники Ферма - не поняли этого нового рода исчисления. Они усмотрели лишь частные случаи. И это изобретение, которое появилось незадолго перед “Геометрией” Декарта, оставалось бесплодным в течении сорока лет”. Лагранж имеет в виду 1674 г., когда вышли в свет “Лекции” Исаака Барроу, подробно освещавшие метод Ферма.

Кроме всего прочего быстро обнаружилось, что Ферма более склонен формулировать новые проблемы, нежели, чем смиренно решать задачи, предложенные метрами. В эпоху дуэлей обмен задачами между учеными мужами был общепринят, как форма выяснения проблем, связанных с субординацией. Однако Ферма явно не знает меры. Каждое его письмо - это вызов, содержащий десятки сложных нерешенных задач, причем на самые неожиданные темы. Вот образчик его стиля (адресовано Френиклю де Бесси): “Item, каков наименьший квадрат, который при уменьшении на 109 и прибавлении единицы даст квадрат? Если Вы не пришлете мне общего решения, то пришлите частное для этих двух чисел, которые я выбрал небольшими, чтобы Вас не очень затруднить. После того как Я получу от Вас ответ, я предложу Вам некоторые другие вещи. Ясно без особых оговорок, что в моем предложении требуется найти целые числа, поскольку в случае дробных чисел самый незначительный арифметик смог бы прийти к цели.” Ферма часто повторялся, формулируя одни и те же вопросы по несколько раз, и откровенно блефовал, утверждая, что располагает необыкновенно изящным решением предложенной задачи. Не обходилось и без прямых ошибок. Некоторые из них были замечены современниками, а кое какие коварные утверждения вводили в заблуждение читателей в течении столетий.

Кружок Мерсенна прореагировал адекватно. Лишь Робервиль, единственный член кружка, имевший проблемы с происхождением, сохраняет дружеский тон писем. Добрый пастырь отец Мерсенн пытался вразумить “тулузского нахала”. Но Ферма не намерен оправдываться: ”Преподобный отец! Вы мне пишете, что постановка моих невозможных проблем рассердила и охладила господ Сен-Мартена и Френикля и что это послужило причиной прекращения их писем. Однако я хочу возразить им, что то, что кажется сначала невозможным, на самом деле не является таковым и что есть много проблем, о которых, как сказал Архимед... ” и т.д..

Однако Ферма лукавит. Именно Френиклю он послал задачу о нахождении прямоугольного треугольника с целочисленными сторонами, площадь которого равна квадрату целого числа. Послал, хотя знал, что задача заведомо не имеет решения.

Самую враждебную позицию по отношению к Ферма занял Декарт. В его письме Мерсенну от 1938 г. читаем: “так как я узнал, что это тот самый человек который перед тем пытался опровергнуть мою “Диоптрику”, и так как Вы сообщили мне, что он послал это после того, как прочел мою “Геометрию” и в удивлении, что я не нашел ту же вещь, т. е. (как имею основание его истолковать) послал это с целью вступить в соперничество и показать, что в этом он знает больше, чем я, и так как еще из ваших писем я узнал, что за ним числится репутация весьма сведущего геометра, то я считаю себя обязанным ему ответить.” Свой ответ Декарт в последствии торжественно обозначит как “малый процесс Математики против г. Ферма”.

Легко понять, что привело в ярость именитого ученого. Во-первых, в рассуждениях Ферма постоянно фигурируют координатные оси и представление чисел отрезками - прием, который Декарт всесторонне развивает в своей только что изданной “Геометрии”. Ферма приходит к идее замены чертежа вычислениями совершенно самостоятельно, в чем-то он даже более последователен, чем Декарт. Во-вторых, Ферма блестяще демонстрирует эффективность своего метода нахождения минимумов на примере задачи о кратчайшем пути светового луча, уточняя и дополняя Декарта с его “Диоптрикой”.

Заслуги Декарта как мыслителя и новатора огромны, но откроем современную “Математическую энциклопедию” и просмотрим список терминов связанных с его именем: “Декартовы координаты” (Лейбниц, 1692) , “Декартов лист”, “Декарта овалы ”. Ни одно из его рассуждений не вошло в историю как “Теорема Декарта”. Декарт в первую очередь идеолог: он основатель философской школы, он формирует понятия, совершенствует систему буквенных обозначений, но в его творческом наследии мало новых конкретных приемов. В противоположность ему Пьер Ферма мало пишет, но по любому поводу может придумать массу остроумных математических трюков (см. там же “Теорема Ферма”, ”Принцип Ферма”, ”Метод бесконечного спуска Ферма”). Вероятно, они вполне справедливо завидовали друг другу. Столкновение было неизбежно. При иезуитском посредничестве Мерсенна разгорается война, длившаяся два года. Впрочем, Мерсенн и здесь оказался прав перед историей: яростная схватка двух титанов, их напряженная, мягко говоря, полемика способствовала осмыслению ключевых понятий математического анализа.

Первым теряет интерес к дискуссии Ферма. По-видимому, он напрямую объяснился с Декартом и больше никогда не задевал соперника. В одной из своих последних работ “Синтез для рефракции”, рукопись которой он послал де ла Шамбру, Ферма через слово поминает “ученейшего Декарта” и всячески подчеркивает его приоритет в вопросах оптики. Между тем именно эта рукопись содержала описание знаменитого “принципа Ферма”, который обеспечивает исчерпывающее объяснение законов отражения и преломления света. Реверансы в сторону Декарта в работе такого уровня были совершенно излишни.

Что же произошло? Почему Ферма, отложив в сторону самолюбие, пошел на примирение? Читая письма Ферма тех лет (1638 - 1640 гг.), можно предположить самое простое: в этот период его научные интересы резко изменились. Он забрасывает модную циклоиду, перестает интересоваться касательными и площадями, и на долгие 20 лет забывает о своем методе нахождения максимума. Имея огромные заслуги в математике непрерывного, Ферма целиком погружается в математику дискретного, оставив опостылевшие геометрические чертежи своим оппонентам. Его новой страстью становятся числа. Собственно говоря, вся “Теория чисел”, как самостоятельная математическая дисциплина, своим появлением на свет целиком обязана жизни и творчеству Ферма.

<…> После смерти Ферма его сын Самюэль издал в 1670 г. принадлежащий отцу экземпляр “Арифметики” под названием “Шесть книг арифметики александрийца Диофанта с комментариями Л. Г. Баше и замечаниями П. де Ферма, тулузского сенатора”. В книгу были включены также некоторые письма Декарта и полный текст сочинения Жака де Бильи “Новое открытие в искусстве анализа”, написанное на основе писем Ферма. Издание имело невероятный успех. Перед изумленными специалистами открылся невиданный яркий мир. Неожиданность, а главное доступность, демократичность теоретико-числовых результатов Ферма породили массу подражаний. В то время мало кто понимал как вычисляется площадь параболы, но каждый школяр мог осознать формулировку Великой теоремы Ферма. Началась настоящая охота за неизвестными и утерянными письмами ученого. До конца XVII в. было издано и переиздано каждое найденное его слово. Но бурная история развития идей Ферма только начиналась.

Пьер Ферма, читая «Арифметику» Диофанта Александрийского и размышляя над её задачами, имел привычку записывать на полях книги результаты своих размышлений в виде кратких замечаний. Против восьмой задачи Диофанта на полях книги, Ферма записал: «Наоборот, невозможно разложить ни куб на два куба, ни биквадрат на два биквадрата, и, вообще, никакую степень, большую квадрата на две степени с тем же показателем. Я открыл этому поистине чудесное доказательство, но эти поля для него слишком узки » /Э.Т.Белл «Творцы математики». М.,1979, стр.69 /. Предлагаю Вашему вниманию элементарное доказательство теоремы ферма, которое может понять любой старшеклассник, увлекающийся математикой.

Сравним комментарий Ферма к задаче Диофанта с современной формулировкой великой теоремы Ферма, имеющей вид уравнения.
«Уравнение

x n + y n = z n (где n – целое число большее двух)

не имеет решений в целых положительных числах »

Комментарий находится с задачей в логической связи, аналогичной логической связи сказуемого с подлежащим. То, что утверждается задачей Диофанта, наоборот утверждается комментарием Ферма.

Комментарий Ферма можно так трактовать: если квадратное уравнение с тремя неизвестными имеет бесконечное множество решений на множестве всех троек пифагоровых чисел, то, наоборот, уравнение с тремя неизвестными в степени, большей квадрата

В уравнении нет даже намека на его связь с задачей Диофанта. Его утверждение требует доказательства, но при нём нет условия, из которого следует, что оно не имеет решений в целых положительных числах.

Известные мне варианты доказательства уравнения сводятся к следующему алгоритму.

  1. Уравнение теоремы Ферма принимается за её заключение, в справедливости которого убеждаются при помощи доказательства.
  2. Это же уравнение называют исходным уравнением, из которого должно исходить его доказательство.

В результате образовалась тавтология: «Если уравнение не имеет решений в целых положительных числах, то оно не имеет решений в целых положительных числах ».Доказательство тавтологии заведомо является неправильным и лишенным всякого смысла. Но её доказывают методом от противного.

  • Принимается предположение, противоположное тому, что утверждается уравнением, которое требуется доказать. Оно не должно противоречить исходному уравнению, а оно ему противоречит. Доказывать то, что принято без доказательства, и принимать без доказательства то, что требуется доказать, не имеет смысла.
  • На основании принятого предположения выполняются абсолютно правильные математические операции и действия, чтобы доказать, что оно противоречит исходному уравнению и является ложным.

Поэтому вот уже 370 лет доказательство уравнения великой теоремы Ферма остаётся неосуществимой мечтой специалистов и любителей математики.

Я принял уравнение за заключение теоремы, а восьмую задачу Диофанта и её уравнение — за условие теоремы.


«Если уравнение x 2 + y 2 = z 2 (1) имеет бесконечное множество решений на множестве всех троек пифагоровых чисел, то, наоборот, уравнение x n + y n = z n , где n > 2 (2) не имеет решений на множестве целых положительных чисел.»

Доказательство.

А) Всем известно, что уравнение (1) имеет бесконечное множество решений на множестве всех троек пифагоровых чисел. Докажем, что ни одна тройка пифагоровых чисел, являющаяся решением уравнения (1), не является решением уравнения (2).

На основании закона обратимости равенства, стороны уравнения (1) поменяем местами. Пифагоровы числа (z, х, у ) могут быть истолкованы как длины сторон прямоугольного треугольника, а квадраты ( x 2 , y 2 , z 2 ) могут быть истолкованы как площади квадратов, построенных на его гипотенузе и катетах.

Площади квадратов уравнения (1) умножим на произвольную высоту h :

z 2 h = x 2 h + y 2 h (3)

Уравнение (3) можно трактовать как равенство объема параллелепипеда сумме объёмов двух параллелепипедов.

Пусть высота трех параллелепипедов h = z :

z 3 = x 2 z + y 2 z (4)

Объем куба разложился на два объема двух параллелепипедов. Объём куба оставим без изменений, а высоту первого параллелепипед уменьшим до x и высоту второго параллелепипеда уменьшим до y . Объём куба больше суммы объёмов двух кубов:

z 3 > x 3 + y 3 (5)

На множестве троек пифагоровых чисел (х, у, z ) при n = 3 не может быть ни одного решения уравнения (2). Следовательно, на множестве всех троек пифагоровых чисел невозможно куб разложить на два куба.

Пусть в уравнении (3) высота трёх параллелепипедов h = z 2 :

z 2 z 2 = x 2 z 2 + y 2 z 2 (6)

Объем параллелепипеда разложился на сумму объёмов двух параллелепипедов.
Левую сторону уравнения (6) оставим без изменения. На правой его стороне высоту z 2 уменьшим до х в первом слагаемом и до у 2 во втором слагаемом.

Уравнение (6) обратилось в неравенство:

Объем параллелепипеда разложился на два объема двух параллелепипедов.

Левую сторону уравнения (8) оставим без изменения.
На правой стороне высоту z n-2 уменьшим до x n-2 в первом слагаемом и уменьшим до y n-2 во втором слагаемом. Уравнение (8) обращается в неравенство:

z n > x n + y n (9)

На множестве троек пифагоровых чисел не может быть ни одного решения уравнения (2).

Следовательно, на множестве всех троек пифагоровых чисел при всех n > 2 уравнение (2) не имеет решений.

Получено «постине чудесное доказательство», но только для троек пифагоровых чисел . В этом заключается недостаток доказательства и причина отказа П. Ферма от него.

B) Докажем, что уравнение (2) не имеет решений на множестве троек непифагоровых чисел, представляющем сбой семейство произвольно взятой тройки пифагоровых чисел z = 13, x = 12, y = 5 и семейство произвольно взятой тройки целых положительных чисел z = 21, x = 19, y = 16

Обе тройки чисел являются членами своих семейств:

(13, 12, 12); (13, 12,11);…; (13, 12, 5) ;…; (13,7, 1);…; (13,1, 1) (10)
(21, 20, 20); (21, 20, 19);…;(21, 19, 16);…;(21, 1, 1) (11)

Число членов семейства (10) и (11) равно половине произведения 13 на 12 и 21 на 20, т. е. 78 и 210.

В каждом члене семейства (10) присутствует z = 13 и переменные х и у 13 > x > 0 , 13 > y > 0 1

В каждом члене семейства (11) присутствует z = 21 и переменные х и у , которые принимают значения целых чисел 21 > x >0 , 21 > y > 0 . Переменные последовательно убывают на 1 .

Тройки чисел последовательности (10) и (11) можно представить в виде последовательности неравенств третьей степени:

13 3 < 12 3 + 12 3 ;13 3 < 12 3 + 11 3 ;…; 13 3 < 12 3 + 8 3 ; 13 3 > 12 3 + 7 3 ;…; 13 3 > 1 3 + 1 3
21 3 < 20 3 + 20 3 ; 21 3 < 20 3 + 19 3 ; …; 21 3 < 19 3 + 14 3 ; 21 3 > 19 3 + 13 3 ;…; 21 3 > 1 3 + 1 3

и в виде неравенств четвертой степени:

13 4 < 12 4 + 12 4 ;…; 13 4 < 12 4 + 10 4 ; 13 4 > 12 4 + 9 4 ;…; 13 4 > 1 4 + 1 4
21 4 < 20 4 + 20 4 ; 21 4 < 20 4 + 19 4 ; …; 21 4 < 19 4 + 16 4 ;…; 21 4 > 1 4 + 1 4

Правильность каждого неравенства удостоверяется возвышением чисел в третью и в четвертую степень.

Куб большего числа невозможно разложить на два куба меньших чисел. Он или меньше, или больше, суммы кубов двух меньших чисел.

Биквадрат большего числа невозможно разложить на два биквадрата меньших чисел. Он или меньше, или больше, суммы биквадратов меньших чисел.

С возрастанием показателя степени все неравенства, кроме левого крайнего неравенства, имеют одинаковый смысл:

Неравенств они все имеют одинаковый смысл: степень большего числа больше суммы степеней меньших двух чисел с тем же показателем:

13 n > 12 n + 12 n ; 13 n > 12 n + 11 n ;…; 13 n > 7 n + 4 n ;…; 13 n > 1 n + 1 n (12)
21 n > 20 n + 20 n ; 21 n > 20 n + 19 n ;…; ;…; 21 n > 1 n + 1 n (13)

Левый крайний член последовательностей (12) (13) представляет собой наиболее слабое неравенство. Его правильность определяет правильность всех последующих неравенств последовательности (12) при n > 8 и последовательности (13) при n > 14 .

Среди них не может быт ни одного равенства. Произвольно взятая тройка целых положительных чисел (21,19,16) не является решением уравнения (2) великой теоремы Ферма. Если произвольно взятая тройка целых положительных чисел не является решением уравнения, то уравнение не имеет решений на множестве целых положительных чисел, что и требовалось доказать.

С) В комментарии Ферма к задаче Диофанта утверждается, что невозможно разложить «вообще, никакую степень, большую квадрата, на две степени с тем же показателем ».

Целую степень, большую квадрата, действительно невозможно разложить на две степени с тем же показателем. Нецелую степень, большую квадрата можно разложить на две степени с тем же показателем.

Любая произвольно взятая тройка целых положительных чисел (z, x, y) может принадлежать семейству, каждый член которого состоит из постоянного числа z и двух чисел, меньших z . Каждый член семейства может быть представлен в форме неравенства, а все полученные неравенства — в виде последовательности неравенств:

z n < (z — 1) n + (z — 1) n ; z n < (z — 1) n + (z — 2) n ; …; z n > 1 n + 1 n (14)

Последовательность неравенств (14) начинается неравенствами, у которых левая сторона меньше правой стороны, а оканчивается неравенствами, у которых правая сторона меньше левой стороны. С возрастанием показателя степени n > 2 число неравенств правой стороны последовательности (14) увеличивается. При показателе степени n = k все неравенства левой стороны последовательности изменяют свой смысл и принимают смысл неравенств правой стороны неравенств последовательности (14). В результате возрастания показателя степени у всех неравенств левая сторона оказывается больше правой стороны:

z k > (z-1) k + (z-1) k ; z k > (z-1) k + (z-2) k ;…; z k > 2 k + 1 k ; z k > 1 k + 1 k (15)

При дальнейшем возрастании показателя степени n > k ни одно из неравенств не изменяет своего смысла и не обращается в равенство. На этом основании можно утверждать, что любая произвольно взятая тройка целых положительных чисел (z, x, y) при n > 2 , z > x , z > y

В произвольно взятой тройке целых положительных чисел z может быть сколь угодно большим натуральным числом. Для всех натуральных чисел, которые не больше z , большая теорема Ферма доказана.

D) Каким бы ни было большим число z , в натуральном ряду чисел до него имеется большое, но конечное множество целых чисел, а после него – бесконечное множество целых чисел.

Докажем, что все бесконечное множество натуральных чисел, больших z , образуют тройки чисел, которые не являются решениями уравнения большой теоремы Ферма, например, произвольно взятая тройка целых положительных чисел (z + 1, x ,y) , в которой z + 1 > x и z + 1 > y при всех значениях показателя степени n > 2 не является решением уравнения большой теоремы Ферма.

Произвольно взятая тройка целых положительных чисел (z + 1, x, y) может принадлежать семейству троек чисел, каждый член которого состоят из постоянного числа z + 1 и двух чисел х и у , принимающих различные значения, меньшие z + 1 . Члены семейства могут быть представлены в форме неравенств, у которых постоянная левая сторона меньше, или больше, правой стороны. Неравенства можно упорядоченно расположить в виде последовательности неравенств:

При дальнейшем возрастании показателя степени n > k до бесконечности ни одно из неравенств последовательности (17) не изменяет своего смысла и не обращается в равенство. В последовательности (16) неравенство, образованное из произвольно взятой тройки целых положительных чисел (z + 1, x, y) , может находиться в её правой части в виде (z + 1) n > x n + y n или находиться в её левой части в виде (z + 1) n < x n + y n .

В любом случае тройка целых положительных чисел (z + 1, x, y) при n > 2 , z + 1 > x , z + 1 > y в последовательности (16) представляет собой неравенство и не может представлять собой равенства, т. е. не может представлять собой решения уравнения большой теоремы Ферма.

Легко и просто понять происхождение последовательности степенных неравенств (16), в которой последнее неравенство левой стороны и первое неравенство правой стороны являются неравенствами противоположного смысла. Наоборот, нелегко и непросто школьникам, старшекласснику и старшекласснице, понять, каким образом из последовательности неравенств (16) образуется последовательность неравенств (17), в которой все неравенства одинакового смысла.

В последовательности (16) увеличение целой степени неравенств на 1 единицу обращает последнее неравенство левой стороны в первое неравенство противоположного смысла правой стороны. Таким образом, количество неравенств девой стороны последовательности уменьшается, а количество неравенств правой стороны увеличивается. Между последним и первым степенными неравенствами противоположного смысла в обязательном порядке находится степенное равенство. Его степень не может быть целым числом, так как между двумя последовательными натуральными числами находятся только нецелые числа. Степенное равенство нецелой степени, по условию теоремы, не может считаться решением уравнения (1).

Если в последовательности (16) продолжать увеличение степени на 1 единицу, то последнее неравенство её левой стороны обратится в первое неравенство противоположного смысла правой стороны. В результате не останется ни одного неравенства левой стороны и останутся только неравенства правой стороны, которые представят собой последовательность усиливающихся степенных неравенств (17). Дальнейшее увеличение их целой степени на 1 единицу лишь усиливает её степенные неравенства и категорически исключает возможность появления равенства в целой степени.

Следовательно, вообще, никакую целую степень натурального числа (z+1) последовательности степенных неравенств (17) невозможно разложить на две целых степени с тем же показателем. Поэтому уравнение (1) не имеет решений на бесконечном множестве натуральных чисел, что и требовалось доказать.

Следовательно, большая теорема Ферма доказана во всей всеобщности:

  • в разделе А) для всех троек (z, x, y) пифагоровых чисел (открытое Ферма поистине чудесное доказательство),
  • в разделе В) для всех членов семейства любой тройки (z, x, y) пифагоровых чисел,
  • в разделе С) для всех троек чисел (z, x, y) , не больших числа z
  • в разделе D) для всех троек чисел (z, x, y) натурального ряда чисел.

Изменения внесены 05.09.2010 г.

Какие теоремы можно и какие нельзя доказать от противного

В толковом словаре математических терминов дано определение доказательству от противного теоремы, противоположной обратной теореме.

«Доказательство от противного – метод доказательства теоремы (предложения), состоящий в том, что доказывают не саму теорему, а ей равносильную (эквивалентную), противоположную обратной (обратную противоположной) теорему. Доказательство от противного используют всякий раз, когда прямую теорему доказать трудно, а противоположную обратной легче. При доказательстве от противного заключение теоремы заменяется её отрицанием, и путём рассуждения приходят к отрицанию условия, т.е. к противоречию, к противному (противоположному тому, что дано; это приведение к абсурду и доказывает теорему».

Доказательство от противного очень часто применяется в математике. Доказательство от противного основано на законе исключённого третьего, заключающегося в том, что из двух высказываний (утверждений) А и А (отрицание А) одно из них истинно, а другое ложно». /Толковый словарь математических терминов: Пособие для учителей/О. В. Мантуров [и др.]; под ред. В. А. Диткина.- М.: Просвещение, 1965.- 539 с.: ил.-C.112/.

Не лучше было бы открыто заявить о том, что метод доказательства от противного не является математическим методом, хотя и используется в математике, что он является логическим методом и принадлежит логике. Допустимо ли утверждать, что доказательство от противного «используют всякий раз, когда прямую теорему доказать трудно», когда на самом деле его используют тогда, и только тогда, когда ему нет замены.

Заслуживает особого внимания и характеристика отношения друг к другу прямой и обратной ей теорем. «Обратная теорема для данной теоремы (или к данной теореме) — теорема, в которой условием является заключение, а заключением – условие данной теоремы. Данная теорема по отношению к обратной теореме называется прямой теоремой (исходной). В то же время обратная теорема к обратной теореме будет данной теоремой; поэтому прямая и обратная теоремы называются взаимно обратными. Если прямая (данная) теорема верна, то обратная теорема не всегда верна. Например, если четырёхугольник – ромб, то его диагонали взаимно перпендикулярны (прямая теорема). Если в четырёхугольнике диагонали взаимно перпендикулярны, то четырёхугольник есть ромб – это неверно, т. е. обратная теорема неверна». /Толковый словарь математических терминов: Пособие для учителей/О. В. Мантуров [и др.]; под ред. В. А. Диткина.- М.: Просвещение, 1965.- 539 с.: ил.-C.261 /.

Данная характеристика отношения прямой и обратной теорем не учитывает того, что условие прямой теоремы принимается как данное, без доказательства, так что его правильность не имеет гарантии. Условие обратной теоремы не принимается как данное, так как оно является заключением доказанной прямой теоремы. Его правильность засвидетельствована доказательством прямой теоремы. Это существенное логическое различие условий прямой и обратной теорем оказывается решающим в вопросе какие теоремы можно и какие нельзя доказать логическим методом от противного.

Допустим, что на примете имеется прямая теорема, которую доказать обычным математическим методом можно, но трудно. Сформулируем её в общем виде в краткой форме так: из А следует Е . Символ А имеет значение данного условия теоремы, принятого без доказательства. Символ Е имеет значение заключения теоремы, которое требуется доказать.

Доказывать прямую теорему будем от противного, логическим методом. Логическим методом доказывается теорема, которая имеет не математическое условие, а логическое условие. Его можно получить, если математическое условие теоремы из А следует Е , дополнить прямо противоположным условием из А не следует Е .

В результате получилось логическое противоречивое условие новой теоремы, заключающее в себе две части: из А следует Е и из А не следует Е . Полученное условие новой теоремы соответствует логическому закону исключённого третьего и соответствует доказательству теоремы методом от противного.

Согласно закону, одна часть противоречивого условия является ложной, другая его часть является истинной, а третье – исключено. Доказательство от противного имеет совей задачей и целью установить, именно какая часть из двух частей условия теоремы является ложной. Как только будет определена ложная часть условия, так будет установлено, что другая часть является истинной частью, а третье — исключено.

Согласно толковому словарю математических терминов, «доказательство есть рассуждение, в ходе которого устанавливается истинность или ложность какого-либо утверждения (суждения, высказывания, теоремы)» . Доказательство от противного есть рассуждение, в ходе которого устанавливается ложность (абсурдность) заключения, вытекающего из ложного условия доказываемой теоремы.

Дано: из А следует Е и из А не следует Е .

Доказать: из А следует Е .

Доказательство : Логическое условие теоремы заключает в себе противоречие, которое требует своего разрешения. Противоречие условия должно найти своё разрешение в доказательстве и его результате. Результат оказывается ложным при безупречном и безошибочном рассуждении. Причиной ложного заключения при логически правильном рассуждении может быть только противоречивое условие: из А следует Е и из А не следует Е .

Нет и тени сомнения в том, что одна часть условия является ложной, а другая в этом случае является истинной. Обе части условия имеют одинаковое происхождение, приняты как данные, предположенные, одинаково возможные, одинаково допустимые и т. д. В ходе логического рассуждения не обнаружено ни одного логического признака, который отличал бы одну часть условия от другой. Поэтому в одной и той же мере может быть из А следует Е и может быть из А не следует Е . Утверждение из А следует Е может быть ложным , тогда утверждение из А не следует Е будет истинным. Утверждение из А не следует Е может быть ложным, тогда утверждение из А следует Е будет истинным.

Следовательно, прямую теорему методом от противного доказать невозможно.

Теперь эту же прямую теорему докажем обычным математическим методом.

Дано: А .

Доказать: из А следует Е .

Доказательство.

1. Из А следует Б

2. Из Б следует В (по ранее доказанной теореме)).

3. Из В следует Г (по ранее доказанной теореме).

4. Из Г следует Д (по ранее доказанной теореме).

5. Из Д следует Е (по ранее доказанной теореме).

На основании закона транзитивности, из А следует Е . Прямая теорема доказана обычным методом.

Пусть доказанная прямая теорема имеет правильную обратную теорему: из Е следует А .

Докажем её обычным математическим методом. Доказательство обратной теоремы можно выразить в символической форме в виде алгоритма математических операций.

Дано: Е

Доказать: из Е следует А .

Доказательство.

1. Из Е следует Д

2. Из Д следует Г (по ранее доказанной обратной теореме).

3. Из Г следует В (по ранее доказанной обратной теореме).

4. Из В не следует Б (обратная теорема неверна). Поэтому и из Б не следует А .

В данной ситуации продолжать математическое доказательство обратной теоремы не имеет смысла. Причина возникновения ситуации – логическая. Неверную обратную теорему ничем заменить невозможно. Следовательно, данную обратную теорему доказать обычным математическим методом невозможно. Вся надежда – на доказательство данной обратной теоремы методом от противного.

Чтобы её доказать методом от противного, требуется заменить её математическое условие логическим противоречивым условием, заключающим в себе по смыслу две части – ложную и истинную.

Обратная теорема утверждает: из Е не следует А . Её условие Е , из которое следует заключение А , является результатом доказательства прямой теоремы обычным математическим методом. Это условие необходимо сохранить и дополнить утверждением из Е следует А . В результате дополнения получается противоречивое условие новой обратной теоремы: из Е следует А и из Е не следует А . Исходя из этого логически противоречивого условия, обратную теорему можно доказать посредством правильного логического рассуждения только, и только, логическим методом от противного. В доказательстве от противного любые математические действия и операции подчинены логическим и поэтому в счёт не идут.

В первой части противоречивого утверждения из Е следует А условие Е было доказано доказательством прямой теоремы. Во второй его части из Е не следует А условие Е было предположено и принято без доказательства. Какое-то из них одно является ложным, а другое – истинным. Требуется доказать, какое из них является ложным.

Доказываем посредством правильного логического рассуждения и обнаруживаем, что его результатом является ложное, абсурдное заключение. Причиной ложного логического заключения является противоречивое логическое условие теоремы, заключающее в себе две части – ложную и истинную. Ложной частью может быть только утверждение из Е не следует А , в котором Е было принято без доказательства. Именно этим оно отличается от Е утверждения из Е следует А , которое доказано доказательством прямой теоремы.

Следовательно, истинным является утверждение: из Е следует А , что и требовалось доказать.

Вывод : логическим методом от противного доказывается только та обратная теорема, которая имеет доказанную математическим методом прямую теорему и которую математическим методом доказать невозможно.

Полученный вывод приобретает исключительное по важности значение в отношении к методу доказательства от противного великой теоремы Ферма. Подавляющее большинство попыток её доказать имеет в своей основе не обычный математический метод, а логический метод доказательства от противного. Доказательство большой теоремы Ферма Уайлса не является исключением.

Дмитрий Абраров в статье «Теорема Ферма: феномен доказательств Уайлса» опубликовал комментарий к доказательству большой теоремы Ферма Уайлсом. По Абрарову, Уайлс доказывает большую теорему Ферма с помощью замечательной находки немецкого математика Герхарда Фрея (р. 1944), связавшего потенциальное решение уравнения Ферма x n + y n = z n , где n > 2 , с другим, совершенно непохожим на него, уравнением. Это новое уравнение задаётся специальной кривой (названной эллиптической кривой Фрея). Кривая Фрея задаётся уравнением совсем несложного вида:
.

«А именно Фрей сопоставил всякому решению (a, b, c) уравнение Ферма, то есть числам, удовлетворяющим соотношению a n + b n = c n , указанную выше кривую. В этом случае отсюда следовала бы великая теорема Ферма». (Цитата по: Абраров Д. «Теорема Ферма: феномен доказательств Уайлса»)

Другими словами, Герхард Фрей предположил, что уравнение большой теоремы Ферма x n + y n = z n , где n > 2 , имеет решения в целых положительных числах. Этими же решения являются, по предположению Фрея, решениями его уравнения
y 2 + x (x — a n) (y + b n) = 0 , которое задаётся его эллиптической кривой.

Эндрю Уайлс принял эту замечательную находку Фрея и с её помощью посредством математического метода доказал, что этой находки, то есть эллиптической кривой Фрея, не существует. Поэтому не существует уравнения и его решений, которые задаются несуществующей эллиптической кривой, Поэтому Уайлсу следовало бы принять вывод о том, что не существует уравнения большой теоремы Ферма и самой теоремы Ферма. Однако им принимается более скромное заключение том, что уравнение большой теоремы Ферма не имеет решений в целых положительных числах.

Неопровержимым фактом может являться то, что Уайлсом принято предположение, прямо противоположное по смыслу тому, что утверждается большой теоремой Ферма. Оно обязывает Уайлса доказывать большую теорему Ферма методом от противного. Последуем и мы его примеру и посмотрим, что из этого примера получается.

В большой теореме Ферма утверждается, что уравнение, x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах.

Согласно логическому методу доказательства от противного, это утверждение сохраняется, принимается как данное без доказательства, и затем дополняется противоположным по смыслу утверждением: уравнение x n + y n = z n , где n > 2 , имеет решения в целых положительных числах.

Предположенное утверждение так же принимается как данное, без доказательства. Оба утверждения, рассматриваемые с точки зрения основных законов логики, являются одинаково допустимыми, равноправными и одинаково возможными. Посредством правильного рассуждения требуется установить, именно какое из них является ложным, чтобы затем установить, что другое утверждение является истинным.

Правильное рассуждение завершается ложным, абсурдным заключением, логической причиной которого может быть только противоречивое условие доказываемой теоремы, заключающее в себе две части прямо противоположного смысла. Они и явились логической причиной абсурдного заключения, результата доказательства от противного.

Однако в ходе логически правильного рассуждения не было обнаружено ни одного признака, по которому можно было бы установить, какое именно утверждение является ложным. Им может быть утверждение: уравнение x n + y n = z n , где n > 2 , имеет решений в целых положительных числах. На этом же основании им может быть утверждение: уравнение x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах.

В итоге рассуждения вывод может быть только один: большую теорему Ферма методом от противного доказать невозможно .

Было бы совсем другое дело, если бы большая теорема Ферма была обратной теоремой, которая имеет прямую теорему, доказанную обычным математическим методом. В этом случае её можно было доказать от противного. А так как она является прямой теоремой, то её доказательство должно иметь в своей основе не логический метод доказательства от противного, а обычный математический метод.

По словам Д. Абрарова, самый известный из современных российских математиков академик В. И. Арнольд на доказательство Уайлса отреагировал «активно скептически». Академик заявил: «это не настоящая математика – настоящая математика геометрична и сильна связями с физикой».(Цитата по: Абраров Д. «Теорема Ферма: феномен доказательств Уайлса». Заявление академика выражает самую сущность нематематического доказательства Уайлса большой теоремы Ферма.

Методом от противного невозможно доказать ни того, что уравнение большой теоремы Ферма не имеет решений, ни того, что оно имеет решения. Ошибка Уайлса не математическая, а логическая — использование доказательства от противного там, где его использование не имеет смысла и большой теоремы Ферма не доказывает.

Не доказывается большая теорема Ферма и с помощью обычного математического метода, если в ней дано: уравнение x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах, и если в ней требуется доказать: уравнение x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах. В такой форме имеется не теорема, а тавтология, лишённая смысла.

Примечание. Моё доказательство БТФ обсуждалось на одном из форумов. Один из участников Trotil, специалист в теории чисел, сделал следующее авторитетное заявление под названием: «Краткий пересказ того, что сделал Миргородский». Привожу его дословно:

«А. Он доказал, что если z 2 = x 2 + y , то z n > x n + y n . Это хорошо известный и вполне очевидный факт.

В. Он взял две тройки — пифагорову и не пифагорову и показал простым перебором, что для конкретного, определённого семейства троек (78 и 210 штук) БТФ выполняется (и только для него).

С. А затем автором опущен тот факт, что из < в последующей степени может оказаться = , а не только > . Простой контрпример — переход n = 1 в n = 2 в пифагоровой тройке.

D. Этот пункт ничего существенного в доказательство БТФ не вносит. Вывод: БТФ не доказана».

Рассмотрю его заключение по пунктам.

А. В нём доказана БТФ для всего бесконечного множества троек пифагоровых чисел. Доказана геометрическим методом, который, как я полагаю, мной не открыт, а переоткрыт. А открыт он был, как я полагаю, самим П. Ферма. Именно его мог иметь в виду Ферма, когда писал:

«Я открыл этому поистине чудесное доказательство, но эти поля для него слишком узки». Данное моё предположение основано на том, что в задаче Диофанта, против которой, на полях книги, писал Ферма, речь идёт о решениях диофантова уравнения, которыми являются тройки пифагоровых чисел.

Бесконечное множество троек пифагоровых чисел является решениями диофатова уравнения, а в теореме Ферма, наоборот, ни одно из решений не может быть решением уравнения теоремы Ферма. И к этому факту поистине чудесное доказательство Ферма имеет непосредственное отношение. Позже Ферма мог распространить свою теорему на множество всех натуральных чисел. На множестве всех натуральных чисел БТФ не относится к «множеству исключительно красивых теорем». Это — моё предположение, которое ни доказать, ни опровергнуть невозможно. Его можно и принимать и отвергать.

В. В данном пункте мной доказывается, что как семейство произвольно взятой пифагоровой тройки чисел, так и семейство произвольно взятой не пифагоровой тройки чисел БТФ выполняется, Это — необходимое, но недостаточное и промежуточное звено в моём доказательстве БТФ. Взятые мной примеры семейства тройки пифагоровых чисел и семейства тройки не пифагоровых чисел имеют значение конкретных примеров, предполагающих и не исключающих существование аналогичных других примеров.

Утверждение Trotil, что я «показал простым перебором, что для конкретного, определённого семейства троек (78 и 210 штук) БТФ выполняется (и только для него) лишено основания. Он не может опровергнуть того факта, что я с таким же успехом могу взять другие примеры пифагоровой и не пифагоровой тройки для получения конкретного определённого семейства одной и другой тройки.

Какую пару троек я ни взял бы, проверка их пригодности для решения задачи может быть осуществлена, на мой взгляд, только методом «простого перебора». Какой-то другой метод мне не известен и не требуется. Если он пришёлся не по вкусу Trotil, то ему следовало бы предложить другой метод, чего он не делает. Не предлагая ничего взамен, осуждать «простой перебор», который в данном случае незаменим, некорректно.

С. Мною опущено = между < и < на основании того, что в доказательстве БТФ рассматривается уравнение z 2 = x 2 + y (1), в котором степень n > 2 целое положительное число. Из равенства, находящегося между неравенствами следует обязательное рассмотрение уравнения (1) при нецелом значении степени n > 2 . Trotil, считая обязательным рассмотрение равенства между неравенствами, фактически считает необходимым в доказательстве БТФ рассмотрение уравнения (1) при нецелом значении степени n > 2 . Я это сделал для себя и обнаружил, что уравнение (1) при нецелом значении степени n > 2 имеет решением тройку чисел: z, (z-1), (z-1) при нецелом показателе степени.