Современные представления о иммунитете. Современные представления об иммунитете виды иммунитета неспецифические факторы Современные представления об иммунитете

План лекции

    Иммунология и виды иммунитета.

    Врожденный и приобретенный иммунитет.

    Антигены.

    Антитела.

Литература.

    Ветеринарна мікробіологія та імунологія: Підручник [Текст] / А.В.Демченко, В.А.Бортнічук, В.Г.Скибицький, В.М.Апатенко.-К.:Урожай, 1996.-386с.

    Загальна ветеринарна мікробіологія: Навч. посібник для викладачів і студентів / В.М. Апатенко, Б.Т.Стегній, В.О. Головко, С.А.Ничик. – Х.: РВВ ХДЗВА, 2009.-294с.

    Ветеринарна мікробіологія /В.А. Бортнічук, В.Г. Скибицький, Ф.Ж. Ібатуліна // Практикум: УСГА, 1993 – 206с.

    Апатенко В.М. Ветеринарна імунологія та імунопатологія / Навчальний посібник.- К.: «Урожай», 1994.-128с.

1. Иммунология и виды иммунитета.

Иммунология – наука об иммунитете, которая изучает основные механизмы защиты организма, а также разрабатывает иммунологические методы диагностики, лечения и профилактики болезней человека и животных.

Начало новой науки было положено английским врачом Дженером (1749-1823), который заметил, что во время эпидемии оспы чаще других не болеют доярки. Известно, что коровы болеют оспой с поражением кожи, особенно вымени и сосков. У доярок заразившихся от коров больных оспой, возникают пустулы на руках. Переболевшие доярки не заболевали натуральной оспой. В подтверждение своих наблюдений в 1796 г он привил 8-летнему мальчику сначала коровью оспу, а спустя 1,5 мес. оспу человека и мальчик не заболел. В честь первооткрывателя предохранительных прививок Дженера названы ослабленные культуры возбудителей болезней вакцинами от лат. слова vacca – корова. Основоположникм иммунологии признан Пастер.

В результате новых открытий и достижений иммунология выросла в самостоятельную научную дисциплину, которая охватывает множество проблем и имеет ряд новых направлений общей иммунологии в частности: молекулярная иммунология, иммунопатология, иммуногенетика, иммунохимия, клиническая иммунология, иммунологическая репродукция и эмбриогенез, иммунопатология, иммуноонкология, трансплантационная иммунология.

На смену старой классификации иммунологии за последние годы сформировалась новая современная иммунология.

Современная иммунология называется новой не только потому, что за последние десятилетия расширились рамки старой классической иммунологии, которая была определена Пастером и Мечниковым как наука о невосприимчивости организма к инфекционным болезням. В настоящее время определение иммунитета как части учения об инфекции является не полным.

Современная иммунология сформировалась как наука о сохранении антигенного постоянства организма. Иммунитет это способ защиты организма от живых тел и веществ, несущих на себе признаки чужеродной генетической информации. В понятие живых тел и веществ, генетически отличающихся от собственных, могут быть включены вирусы, бактерии, простейшие, ткани и органы измененные, в том числе и раковые. Приведенная формулировка иммунитета находится в соответствии с аксиомой Бернета, постулирующей то, что центральным биологическим механизмом иммунитета служит распознавание своего и чужого, своё воспринимать, чужое – отвергать.

В настоящее время известно, что иммунологическую функцию выполняет специализированная система тканей и органов. Это также специализированная как например пищеварительная, сердечно-сосудистая. Иммунная система – совокупность всех лимфоидных органов и клеток. Она имеет центральные и периферические органы. К центральным органам иммунной системы у млекопитающих относится тимус, костный мозг, у птиц – бурса Фабрициуса. К периферическим – селезенка, лимфатические узлы, пейеровы бляшки, кровь.

Современная иммунология рассматривает следующие 5 форм иммунологических реакций, из которых складывается иммунологический ответ:

1. Выработка антител.

2. Гиперчувствительность немедленного типа.

3. Гиперчувствительность замедленного типа.

4. Иммунологическая память.

5. Иммунологическая толерантность.

Помимо защиты от микроорганизмов – возбудителей инфекционных заболеваний, иммунная система организма участвует в противораковой защите, обеспечивает дифференцировку клеток кроветворной системы, нормальное внутриутробное развитие плода, элиминацию и утилизацию отмерших тканевых структур, а также отторжение пересаженных органов, тканей, клеток. Нарушения иммунной системы, связанные с заболеваниями обуславливают: а) резкое повышение чувствительности к острым и хроническим инфекциям, неэффективность вакцинации, повышенную вероятность возникновения опухолей, аллергию, аутоиммунные заболевания.

Даже простые одноклеточные обладают примитивными защитными механизмами против патогенных микроорганизмов. А у высокоорганизованных, включая и человека, сформировалась сложная многоуровневая протекция, обеспечивающая их стабильное существование. Понятие того, что такое иммунитет , определяется способностью организма сопротивляться чужеродным элементам с антигенными свойствами.

Понятие об иммунной системе

Так как иммунная система отвечает за генетическую целостность развития особи, то она должна характеризоваться следующими признаками:

  • уметь распознавать чужеродные тела с патогенными свойствами;
  • запоминать после первичного контакта антигенные объекты;
  • каждая группа генетически идентичных клеток должна обладать способностью реагировать только на отдельный вид патогенного элемента.

В качестве антигена могут выступить различные болезнетворные микроорганизмы, импланты, собственные, но измененные в результате мутаций или опухолей клетки, и даже эмбрион при беременности.

Иммунология как наука, прошла длительный путь развития. Он не был простым. На начальном его этапе иммунитет и виды, а также механизмы его действия были темой многолетней дискуссии между приверженцами различных представлений о путях защиты организма.

Одна из теорий отводила главное место лейкоцитам, способным поглощать и переваривать антигены. Другая объясняла их обезвреживание действием особых белков – антител, растворённых в плазме крови. В итоге обе точки зрения легли в основу современной теории иммунитета.

Основные виды

Одна из классификаций делит иммунитет по происхождению на естественный и искусственный. Первый из них характеризуется такими разновидностями, как неспецифический (или врождённый) и приобретенный (то есть специфический).

Неспецифический тип передаётся с генами и начинает формироваться уже в эмбриональной стадии с образования фагоцитов. Это клетки, обладающие способностью к поглощению чужеродных организмов. Их источником являются стволовые клетки. Окончательное оформление происходит в селезёнке, где формируются и белковые клетки. Механизм действия неспецифического иммунитета заключается в обнаружении и уничтожении антигена.

Элементы специфического иммунитета также образуются из стволовых клеток. Однако затем они поступают не в селезёнку, а в вилочковую железу, где превращаются в антитела. Иммунная система вырабатывает свой набор антител к каждому заболеванию, с которым встречается организм. Запоминая их, она с каждым разом усиливает свою реакцию.

Чем с большим количеством патогенов она контактирует, тем крепче иммунитет. Поэтому, создавая ребёнку стерильные условия, родители оказывают ему плохую услугу.

Искусственный иммунитет формируется способом вакцинации или введения лечебной сыворотки. Он также подразделяется на активный и пассивный. Первый создается при введении вакцин – препаратов, приготовленных из мертвых или ослабленных микробов. Через несколько дней после этого в организме образуются защитные тела. Обычно вакцины используются с профилактическими целями, но при длительных инфекциях могут применяться и в лечебных.

Пассивный искусственный иммунитет создаётся при введении сывороток. Их получают из крови заражённых инфекцией животных. Они содержат уже готовые антитела, которые помогают справиться с инфекцией, развивающейся быстрее, чем организм успевает сформировать иммунный ответ.

Различные виды иммунитета и их характеристика представлены в следующей таблице.

Классификация по другим признакам

Иммунитет и его виды классифицируются по направленности действия. При таком делении различают инфекционный и неинфекционный иммунитет. К первым видам относятся:

  • антимикробный, куда включают противовирусный, антибактериальный и другие, отличается направленностью защитной реакции организма на уничтожение микроба;
  • антитоксический, когда действие иммунной системы состоит в нейтрализации токсинов микроба.
  • стерильными, когда устойчивость наблюдается к антигену, которого в организме нет;
  • нестерильными, если он присутствует.

Барьер против инфекции представляют неповреждённые кожные покровы и слизистые оболочки. При очистке и шелушении кожи уничтожаются многие патогенные микроорганизмы.

Повреждение верхнего слоя эпидермиса, микротрещины, травмы создают благоприятные условия для внедрения инфекции.

Секрет, выделяемый потовыми железами, слюна, слёзы обладают бактерицидным действием.

Неинфекционный иммунитет также имеет определённые разновидности:

  • трансплантационный – связан с переливаниями крови и имплантацией органов и тканей;
  • противоопухолевый – характеризуется защитной реакцией против опухолевых клеток;
  • репродуктивный – выражен реакцией иммунитета матери на антигены плода, в котором есть чужие гены, полученные от отца;
  • аутоиммунитет – вызван нарушениями в распознавании собственных тканей и их разрушении.

В зависимости от того, какие существуют периоды поддержания иммунной памяти, бывают такие формы иммунитета, как:

  • транзиторный – система защиты «забывает» об антигене сразу после его удаления;
  • кратковременный, когда память поддерживается от одного до нескольких месяцев;
  • долгосрочный – иммунная система помнит антиген до нескольких десятков лет;
  • пожизненный наблюдается обычно при детских инфекционных болезнях – кори, ветрянке и других и действует в течение всей жизни.

Кратковременные формы присутствуют, если антиген не представляет особой опасности для организма, а третий и четвёртый виды связаны с серьёзными болезнями.

Первичные и вторичные органы системы защиты

Характеристика иммунной системы человека включает центральные органы, в которых лимфоциты приобретают уникальные свойства (умение распознавать антигены любого вида), и периферические. В них происходит специализация иммунных клеток, а также формируются Т- и В- лимфоциты. Они расположены на транспортных путях, через которые вероятно проникновение в организм чужеродных объектов.

К центральным относят:

  • красный костный мозг, в нём содержатся стволовые клетки, в которых находятся Т- и В-лейкоциты;
  • вилочковая железа – в ней происходит специализация Т-лимфоцитов.

Периферические включают:

  • лимфатические узлы -– располагаются на пути циркуляции лимфы и занимаются её фильтрацией, извлекая посторонние антигенные элементы;
  • лимфоидные ткани, ассоциированные с кожей и слизистыми оболочками различных органов – представляют барьер для антигенов, проникших в организм;
  • селезёнка – контролирует систему кровообращения и формирует иммунный ответ патогенам, проникшим в кровь.

Знания об иммунитете человека и особенностях его формирования позволяют разрабатывать более эффективные способы борьбы с новыми заболеваниями и многочисленными инфекциями.

Начиная с середины XIX века под иммунитетом в медицине понимали формирование невосприимчивости к инфекционным бо­лезням, которое развивалось в результате вакцинации или перене­сенной болезни. То, что сейчас называют реакциями вторичного иммунного ответа.

С середины XX века формируется иной взгляд на иммунитет. Под системой иммунитета стали понимать систему лимфоид-ных клеток, которые обеспечивали в организме распознавание «своего» и «чужого».

В последние годы в систему иммунитета начинают вклю­ чать практически все клетки белой крови, а также целый ряд других клеток. Основную же функцию иммунитета видят в за­ щите организма от различных проявлений биологической агрессии, как экзогенного, так и эндогенного характера.

Во второй половине XIX в., когда в странах Европы интен­сивно разрабатывались различные подходы к вакцинации, в медицинскую практику прочно входит термин «иммунитет». Этот термин был заимствован из латинского языка, где слово «Immunitas» употреблялось как политический термин, означа­ющий неприкосновенность кого-либо, нераспространение на него общепринятых правил. (Кстати, этот термин используется в области дипломатии и в настоящее время.)

Первоначально под иммунитетом понимали состояние по­вышенной устойчивости (невосприимчивости) человека (или животного) к заражению. Изящество данного термина заклю­чалось в том, что организм, обладающий иммунитетом, дейст­вительно был как бы «неприкосновенным» для данной инфек­ции, и общепринятые правила обязательного инфицирования всех представителей вида, на данный организм не распростра­нялись.

Обычно такое иммунное состояние достигалось путем предварительной вакцинации или благодаря перенесенной ра­нее болезни. То есть в те времена под иммунитетом практиче­ски понимали реакции вторичного иммунного ответа.

Дальнейшие попытки объяснить этот интригующий фено­мен невосприимчивости к инфекции приводят к детальному

изучению различных реакций, возникающих при инфицирова­нии организма. Возникают две гениальные теории иммуните­та — фагоцитарная Мечникова и гуморальная Эрлиха, стояв­шие вначале на антагонистических позициях. Именно борьба этих теории и их всестороннее развитие позволили к середине XX века приподнять занавес над многими неизвестными меха­низмами защиты.

С 60-х годов ХХ-го столетия возникает новое понимание функций и предназначения иммунитета. В это время была от­крыта уникальная способность лимфоцитов к распознаванию генетически чужеродного материала. Выдающийся австралий­ский ученый Бернет создал свою теорию иммунитета. Иммуни­тет рассматривался им как основной механизм, направленный на дифференциацию «своего» и «чужого». И основная роль здесь принадлежала лимфоцитам, которые Бернет предлагал называть «иммуноцитами».

Исходя из необходимости отличать «свое» и «не свое», под иммунитетом стали понимать механизмы поддержания генети­ческого постоянства внутренней среды организма. То есть спе­цифический контроль за присутствием в организме именно «своих» клеток и уничтожение всего «чужого» (бактерий, опу­холевых клеток, клеток чужеродного трансплантата и т. д.).

В дальнейшем многие авторы, описывая проявления имму­нитета, связывали его только со специфическими реакциями лимфоидных клеток. Другие же клетки, активно участвующие в защитных реакциях организма (макрофаги, нейтрофилы, эо-зинофилы, дендритные клетки и др.), оказывались как бы вне сферы иммунологии. В лучшем случае их рассматривали как клетки, помогающие развитию «истинного» иммунитета. Это приводило к недопониманию многих процессов, происходя­щих при инфекционной патологии. Такой «лимфоцентрист-ский» перекос почему-то особенно был выражен в отечествен­ной литературе.

На первых этапах это были примитивные реакции фагоци­тирующих амебоцитов и белков, подобных белкам системы комплемента и белкам «острой фазы». А уже на более развитых ступенях эволюции появляются лимфоидные клетки, осушествляюшие специфические реакции на конкретный антиген, и циркулирующие, специфически направленные молекулы — антитела.

Замечательное свойство эволюции иммунной системы со­стоит в том, что в процессе ее развития появляющиеся более совершенные механизмы зашиты не исключали более древних, предшествующих механизмов. Они развивались и совершенст­вовались параллельно, формируя, таким образом, взаимосвя­занную, «эшелонированную» систему обороны от агрессии па­тогенных микроорганизмов.

Некоторые авторы среди причин эволюции иммунитета на первый план выдвигают необходимость сдерживания и контроля процессов мутагенеза, который должен возрастать в условиях увеличения массы тела и количест­ва соматических клеток. Однако такой подход не вполне убедителен, по­скольку вряд ли «целью» эволюции является простое увеличение количе­ства соматических клеток в организме. Видимо речь здесь, скорее может идти об увеличении количества дифференциированных групп клеток, что явно поддерживается эволюционным процессом.

Таким образом, в последнее время формируется понимание иммунитета (системы иммунитета), как системы факторов, обеспечивающих внутреннюю защиту организма от экзогенной (бактерии, вирусы и др.) и эндогенной (измененные или опухо­левые клетки) биологической агрессии. Эта система имеет не­сколько линий (эшелонов) обороны.

Базируется она на древних, эволюционно закрепившихся зашитных реакциях, осуществляемых лейкоцитами и белками плазмы крови. Часто их называют неспецифическими фактора­ми иммунитета. Они первыми вступают в борьбу с инфекцией и обеспечивают примитивное (лектиноподобное) распознава­ние основных бактериальных антигенов, а так же поврежден­ных собственных клеток (по неэкранированным углеводным остаткам, денатурированным белкам, или отсутствию «своих» белков гистосовместимости).

Они же реализуют процессы нейтрализации и элиминации (удаления) чужеродного материала, которые происходят в ре­акциях фагоцитоза, внеклеточного цитолиза, цитотоксических реакциях естественных киллеров (NK-клеток) или цитолитиче-ских эффектах комплемента.

Параллельно включается вторая, специфическая линия обороны. При этом биологический материал, образующийся в результате деятельности клеток неспецифической линии

борьбы, служит фактором, запускающим реакции второй, спе­цифической линии. Ими служат переработанные (проиессиро-ванные) антигены и различные цитокины.

При достаточно быстрой нейтрализации и удалении чуже­родного материала (например, авирулентных или слабовиру­лентных микроорганизмов) развитие специфических иммун­ных реакций не поддерживается и затухает.

Однако при массивной дозе чужеродного материала или высокой вирулентности возбудителя реакция неспецифиче­ских факторов бывает интенсивной и значительно более дли­тельной. Это означает, что первая линия испытывает сущест­венные трудности и ей необходима помощь второй, специфи­ческой линии защиты.

Последующее включение второй линии, позволяет более эффективно, более «прицельно» и точно вести борьбу с возбу­дителем, несушим конкретные, специфические антигены. При этом возрастает и эффективность базовых реакций не­специфического иммунитета, поскольку специфические ан­титела, сорбируясь на мембранах киллерных клеток или ми­шеней, как бы указывают, куда конкретно должна быть напра­влена атака.

Биологический смысл временного отставания в развитии реакций специфической системы вполне очевиден. Он заклю­чается в том, что резервы этой системы не расходуются «по ме­лочам», на агрессию, не представляющую опасности для жизни организма хозяина.

При запуске реакций, приводящих к развитию выраженно­го специфического ответа, автоматически происходит образо­вание и накопление долгоживуших клеток памяти. Повторная встреча с комплиментарным антигеном, приводит к их уско­ренному и интенсивному размножению. В итоге количество за­щитных факторов (активированных клеток и антител) оказыва­ется настолько значительным, что внедрившийся возбудитель быстро и эффективно нейтрализуется и удаляется. Клиниче­ские проявления болезни при этом крайне незначительны или не выявляются вовсе. В данном случае можно говорить о невос­приимчивости к данной болезни.

Таким образом, понимание иммунитета как многофактор­ной и многоэтапной системы защиты организма наиболее про­дуктивно на современном этапе. В настоящее время предлага­ют выделять два основных типа иммунитета — врожденный и приобретенный.

Современные представления об иммунитете. Виды иммунитета. Неспецифические факторы защиты организма. Понятие об антигенах, антителах. Лекция 2, ФФ

Иммунитет n Иммунитет – это способ защиты организма от генетически чужеродных веществ – антигенов экзогенного и эндогенного происхождения, направленный на поддержание и сохранение гомеостаза, структурной и функциональной целостности организма, биологической (антигенной) индивидуальности каждого организма и вида в целом.

Виды иммунитета (природа АГ) n n n n Антитоксический Противобактериальный Противовирусный Противогрибковый Противопротозойный Противогельминтный Противоопухолевый Трансплантационныйй

Врожденный иммунитет n Врожденный (видовой, генетический, конституциональный, естественный, неспецифический) иммунитет – это выработанная в процессе филогенеза, передающаяся по наследству, присущая всем особям данного вида устойчивость к инфекционным агентам (или антигенам).

Факторы врожденного иммунитета 1. 2. 3. 4. Покровный эпителий кожи и слизистых оболочек, обладающий колонизационной резистентностью. Барьер лимфатических узлов Кровь Внутренние органы

Факторы врожденного иммунитета n n n Барьерфиксирующая функция кожи и слизистых (нормальная микрофлора, лизоцим, колонизационная резистентность) Гуморальные факторы защиты (система комплемента, растворимые рецепторы к поверхностным структурам микроорганизмов (pattern-структуры), антимикробные пептиды, интерфероны) Клеточные факторы защиты (нейтрофилы, макрофаги, дендритные клетки, эозинофилы, базофилы, естественные киллеры-ЕК)

Барьеры кожи и слизистых n n n Кожа. Кератиноциты рогового слоя – это погибшие клетки, устойчивые к агрессивным химическим соединениям. На их поверхности отсутствуют рецепторы для адгезивных молекул микроорганизмов (исключение S. aureus, Pr. acnae, I. pestis) Продукты потовых и сальных желез: молочная кислота, ферменты, жирные кислоты, антибактериальные пептиды). Клетки Лангерганса и клетки Гринстейна (отросчатые эпидермоциты). Имеют миелоидное происхождение и относятся к дендритным клеткам. По функции эти клетки явдяются оппозитными. Клетки Лангерганса – АПК (индуцируют иммунный ответ). Клетки Гринстейна продуцируют цитокины, подавляющие иммунные реакции в коже. Резидентная микрофлора кожи

Барьеры кожи и слизистых n n n Слизистые М-клетки – система облегченного транспорта Аг к ИКК, транслокация бактерий и вирусов через эпителиальный барьер. Ассоциация эпителиоцитов с лимфоидной тканью (слизистая респираторного тракта, ЖКТ и моче-половой системы). Резидентная микрофлора – колонизационная резистентность.

Колонизационная резистентность покровного эпителия n n n Нормальная микрофлора Муцин – экранирует сайты адгезии и делает недоступными для бактерий. Фагоцитирующие клетки и продукты их дегрануляции – продукты лизосом (лизоцим, пероксидаза, лактоферрин, дефензины, токсичные метаболиты кислорода, азота) Химические и механические факторы –секреты слизистых. Целенаправленные движения – перистальтикакишечника, реснички мерцательного эпителия. Секреторные Ig. A

Гуморальные факторы 1. 2. 3. 4. Система комплемента Растворимые рецепторы для патогенов Антимикробные пептиды Семейство интерферонов

Система комплемента n n Система комплемента многокомпонентная полиферментная самосорбирующаяся система сывороточных белков, которые в норме находятся в неактивном состоянии. Комплемент является компонентом многих иммунологических реакций, направленных на освобождение организма от микробов и других чужеродных клеток и антигенов.

Система комплемента n n Входят 20 -27 белков, 9 компонентов: C 1 -C 1 q, C 1 r, C 1 s; C 2; C 3 -C 3 a, C 3 b; C 4; C 5 – C 5 a, C 5 b; C 6; C 7; C 8; C 9 Ключевым событием является его активация

Биологические эффекты активации комплемента n n n Образование мембрано-атакующего комплекса (С 5, 6, 7, 8, 9) и лизис клеток. С 3 а-, С 4 а-и С 5 а – компоненты являются анафилотоксинами, индуцируют дегрануляцию тучных клеток и базофилов (медиторы воспаления). С 5 а- хемоаттрактант для фагоцитов. С 3 в- и С 4 в – опсонины, повышают адгезию иммунных комплексов с мембранами макрофагов, нейтрофилов и эритроцитов, усиливают фагоцитоз.

Пути активации системы комплемента 1. 2. 3. Классический – активатор комплекс Аг+Ат Лектиновый – маннан связывающий протеин (лектин) Альтернативный – активатор ЛПС и пептидогликан клеточной стенки ГОБ, вирусы связываются с белками B, D – протеины, Р – пропердин. Активация комплемента протекает в присутствии ионов Са и Mg.

n Комплемент n n Активация комплемента приводит к появлению С 3 - конвертазы, которая превращает С 3 в СЗb, и эта конверсия - центральное событие всего каскада. В свою очередь, СЗb активирует цепочку концевых компонентов комплемента (С 5 -С 9), образующих литический комплекс. При активации по классическому пути сначала антиген связывается со специфическими антителами и только затем происходит фиксация СЗ. В альтернативной активации антитела не участвуют. Она начинается ковалентным связыванием СЗb с гидроксильными группами на цитоплазматической мембране микробной клетки. Активация по альтернативному пути служит механизмом неспецифического врожденного иммунитета, тогда как классический путь представляет собой связующее звено между врожденным и приобретенным иммунитетом.

Комплемент n n n Анафилатоксин С 5 а вызывает 1) активацию нейтрофилов, 2) повышенную экспрессию ими молекул межклеточной адгезии, 3) эмиграцию нейтрофилов и хемотаксис, 4) активацию моноцитов и 5) дегрануляцию тучных клеток, в результате которой происходит сокращение гладкой мускулатуры и повышение проницаемости сосудов.

Комплемент n n n Компонент С 3, связанный с бактериальной клеткой в виде СЗb или i. СЗb, 1) взаимодействует с СR 1 эритроцитов, на которых бактерии транспортируются кровотоком, 2) служит причалом для лизирующего мембрану комплекса на поверхности бактериальных клеток, 3) сшивает рецепторы комплемента на фагоцитах, 4) активирует фагоциты, стимулируя фагоцитоз, вспышку клеточного дыхания и бактерицидную активность.

Комплемент n n Активация комплемента может вызвать патологические реакции в результате 1) системного образования анафилатоксинов (при септицемии, вызванной грамотрицательными бактериями), 2) внедрения лизирующего мембрану комплекса в мембраны собственных клеток организма (при этом происходит активация клеток и высвобождение метаболитов арахидоновой кислоты, входящей в состав мембран) и З) фиксации СЗ (привлекающего и активирующего тканевые и циркулирующие лейкоциты) на иммунных комплексах, локализованных в тканях.

Растворимые рецепторы для патогенов n n n Белки крови связывающиеся с различными липидными и углеводными структурами микробной клетки (рatternструктурами). Обладают свойствами опсонинов и активируют комплемент. Белки острой фазы: С-реактивный белок – связывается с С-полисахаридом бактерий и усиливает фагоцитоз и активацию С 1 g фракции комплемента (классический путь). синтез в печени и нарастает в ответ на ИЛ-6. Сывороточный амилоид Р близок к действию СРБ. Маннозосвязывающий лектин активирует С по лектиновому пути, опсонин, синтезируется в печени. Белки сурфактанта легких – коллектин. Обладает опсонином в отношении гриба Pneumocystis carinii Белки острой фазы, связывающие железо – трансферрин, гаптоглобин, гемопексин. Препятствуют размножению бактерий, нуждающихся в этих элементах.

Белки сыворотки крови n n n Пропердин – гамма-глобулин нормальной сыворотки. Активация комплемента по альтернативному пути Фибронектин – белок плазмы и тканевых жидкостей, синтезируется макрофагами. Обеспечивает опсонизацию, экранирует дефекты эндотелия, препятствует тромбообразованию. Бета- лизины – белки сыворотки крови, синтезируются тромбоцитами. Повреждение ЦПМ бактериальной клетки

Антимикробные пептиды 1. 2. Лизоцим – фермент муромидаза вызывает гидролиз муреина (пептидокликана) клеточной стенки бактерий и их лизис. Дефензины и кателицидины –пептиды, обладающие антимикробной активностью. Образуются эукариотическими клетками, содержат 13 -18 аминокислот. Известно около 500 разновидностей. синтезируются макрофагами и нейтрофилами(α-дефензины) а также эпителиальными клетками кишечника, легких, мочевого пузыря.

Антимикробные пептиды n n Лизоцим – протеолитический фермент мурамидаза, синтезируется макрофагами и нейтрофилами Механизм действия: разрушение гликопротеидов клеточной стенки бактерии Лизис бактерий Активация фагоцитоза

Семейство интерферонов n n Интерферон –открыт в 1957 г Айзексом и Линдеманом при изучении интерференции вирусов (лат. inter-между, ferens-несущий). Интерференция – явление когда ткань инфицированная одним вирусом становится устойчивой к заражению другим вирусом, устойчивость вызывается белком продуцируемым этими клетками. Интерферон –гликопротеид. Выделяют интерфероны I и II типов.

Интерферон n n α –интерферон лейкоциты β - интерферон фибробласты γ - интерферон – Тлимфоциты, макрофаги, ЕК. Механизм действия: связывается с рецепторами клетки и блокирует синтез белка в клетке (препятствует размножению вирусов)

Интерфероны n n n I тип включает ИНФ α и β. α–интерферон - лейкоциты β- интерферон - фибробласты ζέ – интерферон – трофобласты λ-интерферон, κ-интерферон. Механизм действия ИНФ α и β: активация в клетке генов, блокирующих репродукцию вирусов (индукция синтеза протеинкиназы R, нарушение трансляции м. РНК и запуск апоптоза зараженной клетки через Bcl-2 и каспазазависимые реакции. Другой механизм –активация латентной РНКэндонуклеазы, вызывающей деструкцию вирусной НК.

Этапы фагоцитоза 1. 2. 3. 4. 5. Активация и хемотаксис Адгезия (прикрепление) частиц к поверхности фагоцита Поглощение частиц, их погружение в цитоплазму и формирование фагосомы Образование фаголизосомы Внутриклеточный киллинг и переваривание – активация лизосомальных гранул (кислороднезависимая бактерицидность), усиление потребления кислорода и глюкозы – окислительный взрыв с образованием токсических метаболитов кислорода и азота (перекись водорода, супероксиданион кислорода, гипохлорная кислота, пироксинитрит) – кислородзависимая система бактерицидности.


В конце XX века, через 100 лет после выхода основополагающих трудов Пастера, работ Коха и Мечникова, последовала новая череда открытий в микробиологии. Современные представления об иммунитете претерпели многочисленные изменения, за небольшой период времени (примерно 40 лет) в человеческую популяцию вторглись и были идентифицированы более 40 новых видов патогенных бактерий и вирусов, целый ряд из которых приобрел пандемическое распространение. Поступательное движение глобального эпидемического процесса (как и наших представлений о нем) - от стихийного развития к управляемости - было прервано.

Значение иммунитета в развитии общества сложно переоценить, мы вынуждены констатировать небывалую ранее разнонаправленность тенденций в динамике больших групп инфекционных болезней. С одной стороны, продолжается выдающийся прогресс в борьбе с инфекциями, управляемыми средствами вакцинопрофилактики и санитарно-гигиеническими мерами (детские вирусные и бактериальные инфекции, острые кишечные инфекции бактериальной природы).

С другой стороны, нарастает или сохраняется неблагополучие по "социально-значимым инфекциям" (СПИД, вирусные гепатиты, туберкулез, болезни репродуктивной сферы). В полной мере сохраняют актуальность проблемы хронических, сочетанных и онкогенных инфекций.

И, наконец, существует постоянный и пока непредсказуемый риск возникновения новых инфекционных форм, как это наглядно продемонстрировали эпидемии тяжелого острого респираторного синдрома, "птичьего" гриппа, "свиного" гриппа уже в самом начале XXI столетия.

Проблема борьбы с вновь возникающими инфекциями неожиданно для многих осложнилась тем обстоятельством, что вакцинология, накопившая замечательный опыт создания специфических профилактических препаратов, все чаще сталкивается с неэффективностью классических и новейших подходов к получению вакцин против актуальнейших массовых болезней (ВИЧ-СПИД, вирусный гепатит С, хеликобактериоз).

Это обстоятельство, а также пожизненный или упорный хронический характер течения "новых" инфекций указывают на несостоятельность механизмов иммунной защиты, конкретные причины которой сегодня неясны. Очевиден факт, что нам еще неизвестны какие-то важные фундаментальные основы функционирования иммунной системы.

Ученые добились неплохих результатов в разработках препаратов позволяющих повысить иммунитет, но стоит отметить, что на данный момент этого не достаточно. В связи с этим в последнее время возобновляется интерес к изучению механизмов врожденного иммунитета, способов его стимуляции, поиску новых подходов к формированию приобретенного иммунитета.

Нарастающий темп появления "новых" и постоянные риски возврата "старых" патогенных агентов потребовали резко расширить рамки исследования их циркулирующих популяций. В числе актуальных задач их изучения сегодня - генетика возникновения новых патогенов, механизмы и условия преодоления межвидового барьера, биоразнообразие и изменчивость, доминирующие генотипы и география их распределения, условия формирования эпидемических клонов и линий, механизмы и частота формирования антибиотике - и химиорезистентных штаммов, коэволюция человека и возбудителей массовых инфекционных болезней.

Специальной задачей в этом плане является анализ и выявление закономерностей изменчивости патогенов в условиях селективного давления массовой вакцинопрофилактики, мониторинг актуальности и эффективности вакцин.

Развитие молекулярной биологии, формирование новых наук - геномики, протеомики, биоинформатики и других, быстрый прогресс методологии вооружают современную микробиологию информативными методами исследований. Молекулярный подход сегодня доминирует в изучении как самих патогенных агентов, так и их взаимодействий с биологическими системами макроорганизма.

В самых различных разделах инфекционной патологии возрастает роль исследований по изучению генетических и фенотипических факторов предрасположенности человека к заражению, заболеванию, хронизации инфекции и ее неблагоприятным исходам. В своем практическом аспекте эти исследования, как представляется сегодня, будут наиболее востребованы в области хронических и онкогенных инфекций, поскольку могут способствовать выработке критериев для прогноза клинического течения и исхода инфекции и в конечном итоге - своевременному принятию адекватных лечебно-профилактических мер.

В их числе - вакцинация как мера профилактики онкогенных последствий инфекционных заболеваний. Она уже сделала первые шаги в профилактике гепатокарциномы (вакцина против вирусного гепатита В) и рака шейки матки (вакцина против папилломавирусной инфекции). Следует ожидать, что круг онкогенных инфекций, контролируемых средствами вакцинопрофилактики, будет расширен в обозримом будущем.

Медицинская микробиология и иммунология на современном этапе переживают преимущественно аналитический период в своем развитии. Огромный поток научной информации, получаемой в ходе фундаментальных и прикладных исследований, дает основание надеяться на близкое решение вновь возникающих научных и практических задач диагностики, профилактики и лечения инфекционных заболеваний и их последствий.