Единица измерения джоуля ленца. Закон джоуля-ленца

Одновременно, но независимо друг от друга открывших его в 1840г) - закон, дающий количественную оценку теплового действия электрического тока.

При протекании тока по проводнику происходит превращение электрической энергии в тепловую, причём количество выделенного тепла будет равно работе электрических сил:

Q = W

Закон Джоуля - Ленца: количество тепла, выделяемого в проводнике, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени его прохождения.

Практическое значение

Снижение потерь энергии

При передаче электроэнергии тепловое действие тока является нежелательным, поскольку ведёт к потерям энергии. Поскольку передаваемая мощность линейно зависит как от напряжения, так и от силы тока, а мощность нагрева зависит от силы тока квадратично, то выгодно повышать напряжение перед передачей электроэнергии , понижая в результате силу тока. Повышение напряжения снижает электробезопасность линий электропередачи . В случае применения высокого напряжения в цепи для сохранения прежней мощности потребителя придется увеличить сопротивление потребителя (квадратичная зависимость. 10В, 1 Ом = 20В, 4 Ом). Подводящие провода и потребитель соединены последовательно. Сопротивление проводов (R w ) постоянное. А вот сопротивление потребителя (R c ) растет при выборе более высокого напряжения в сети. Также растет соотношение сопротивления потребителя и сопротивления проводов. При последовательном включении сопротивлений (провод - потребитель - провод) распределение выделяемой мощности (Q ) пропорционально сопротивлению подключенных сопротивлений. ; ; ; ток в сети для всех сопротивлений постоянен. Следовательно имеем соотношение Q c / Q w = R c / R w ; Q c и R w это константы (для каждой конкретной задачи). Определим, что . Следовательно, мощность выделяемая на проводах обратно пропорциональна сопротивлению потребителя, то есть уменьшается с ростом напряжения. так как . (Q c - константа); Объеденим две последние формулы и выведем, что ; для каждой конкретной задачи - это константа. Следовательно, тепло выделяемое на проводе обратно пропорционально квадрату напряжения на потребителе.Ток проходит равномерно.

Выбор проводов для цепей

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при сборке электрических цепей достаточно следовать принятым нормативным документам, которые регламентируют, в частности, выбор сечения проводников.

Электронагревательные приборы

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы . В них используется нагревательный элемент - проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром , константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Плавкие предохранители

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.


Wikimedia Foundation . 2010 .

Смотреть что такое "Закон Джоуля - Ленца" в других словарях:

    Коппа описывает теплоёмкость сложных (т. е. состоящих из нескольких химических элементов) кристаллических тел. Основан на законе Дюлонга Пти. Каждый атом в молекуле имеет три колебательных степени свободы, и он обладает энергией. Соответственно … Википедия

    ЗАКОН ДЖОУЛЯ - закон, согласно которому внутренняя энергия определённой массы (см.) зависит только от температуры и не зависит от его объёма (плотности) … Большая политехническая энциклопедия

    закон джоуля - Joule s law *Joulesches Gesetz – внутрішня енергія ідеального газу залежить тільки від температури … Гірничий енциклопедичний словник

    закон Джоуля - Džaulio dėsnis statusas T sritis Standartizacija ir metrologija apibrėžtis Dėsnis, formuluojamas taip: laidininke, kai juo teka elektros srovė, išsiskiriantis šilumos kiekis Q yra proporcingas srovės kvadratui I², laidininko varžai R ir srovės… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    Закон Джоуля - закон термодинамики, согласно которому внутренняя энергия идеального газа является функцией одной лишь температуры и не зависит от объёма. Установлен экспериментально Дж. П. Джоулем (1818 1889) в 1845 г. Закон является следствием второго начала… … Концепции современного естествознания. Словарь основных терминов

    Описывает теплоёмкость сложных (т.е. состоящих из нескольких химических элементов) кристаллических тел. Основан на законе Дюлонга Пти. Каждый атом в молекуле имеет три колебательных степени свободы, и он обладает энергией. Соответственно,… … Википедия

    Описывает теплоемкость сложных (т.е. состоящих из нескольких химических элементов) кристаллических тел. Основан на законе Дюлонга Пти. Каждый атом в молекуле имеет три колебательных степени свободы, и он обладает энергией. Соответственно,… … Википедия - ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ И МАТЕРИИ, два тесно связанных между собой н очень близких по содержанию закона, лежащих в основании всего точного естествознания. Эти законы имеют чисто количественный характер и являются законами экспериментальными.… … Большая медицинская энциклопедия

Энциклопедичный YouTube

    1 / 3

    Урок 254. Закон Джоуля-Ленца. Работа и мощность электрического тока

    Закон Джоуля-Ленца. Часть 1

    Урок 255. Задачи на работу и мощность электрического тока

    Субтитры

Определения

В словесной формулировке звучит следующим образом

Мощность тепла, выделяемого в единице объёма среды при протекании постоянного электрического тока, пропорциональна произведению плотности электрического тока на величину напряженности электрического поля

Математически может быть выражен в следующей форме:

w = j → ⋅ E → = σ E 2 {\displaystyle w={\vec {j}}\cdot {\vec {E}}=\sigma E^{2}}

где w {\displaystyle w} - мощность выделения тепла в единице объёма, j → {\displaystyle {\vec {j}}} - плотность электрического тока , E → {\displaystyle {\vec {E}}} - напряжённость электрического поля , σ - проводимость среды, а точкой обозначено скалярное произведение.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах :

В интегральной форме этот закон имеет вид

d Q = I 2 R d t {\displaystyle dQ=I^{2}Rdt} Q = ∫ t 1 t 2 I 2 R d t {\displaystyle Q=\int \limits _{t_{1}}^{t_{2}}I^{2}Rdt}

где dQ - количество теплоты, выделяемое за промежуток времени dt , I - сила тока, R - сопротивление, Q - полное количество теплоты, выделенное за промежуток времени от t 1 до t 2 . В случае постоянных силы тока и сопротивления:

Q = I 2 R t {\displaystyle Q=I^{2}Rt}

А применяя закон Ома можно получить следующие эквивалентные формулы:

Q = V 2 t / R = I V t {\displaystyle Q=V^{2}t/R\ =IVt}

Практическое значение

Снижение потерь энергии

При передаче электроэнергии тепловое действие тока в проводах является нежелательным, поскольку ведёт к потерям энергии. Подводящие провода и нагрузка соединены последовательно , значит ток в сети I {\displaystyle I} на проводах и нагрузке одинаков. Мощность нагрузки и сопротивление проводов не должны зависеть от выбора напряжения источника. Выделяемая на проводах и на нагрузке мощность определяется следующими формулами

Q w = R w ⋅ I 2 {\displaystyle Q_{w}=R_{w}\cdot I^{2}} Q c = V c ⋅ I {\displaystyle Q_{c}=V_{c}\cdot I}

Откуда следует, что Q w = R w ⋅ Q c 2 / V c 2 {\displaystyle Q_{w}=R_{w}\cdot Q_{c}^{2}/V_{c}^{2}} . Так как в каждом конкретном случае мощность нагрузки и сопротивление проводов остаются неизменными и выражение R w ⋅ Q c 2 {\displaystyle R_{w}\cdot Q_{c}^{2}} является константой, то тепло выделяемое на проводе обратно пропорционально квадрату напряжения на потребителе. Повышая напряжение мы снижаем тепловые потери в проводах. Это, однако, снижает электробезопасность линий электропередачи .

Выбор проводов для цепей

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при выборе проводов, предназначенных для сборки электрических цепей, достаточно следовать принятым нормативным документам, которые регламентируют выбор сечения проводников.

Электронагревательные приборы

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы . В них используется нагревательный элемент - проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром , константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Плавкие предохранители

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.

Эмилий Христианович Ленц (1804 - 1865) - русский знаменитый физик. Он является одним из основоположников электромеханики. С его именем связано открытие закона, определяющего направление и закона, определяющего электрическое поле в проводнике с током.

Кроме того, Эмилий Ленц и английский учёный-физик Джоуль, изучая на опыте независимо один от другого открыли закон, согласно которому количество теплоты, которое выделяется в проводнике, будет прямо пропорционально квадрату электрического тока, который проходит по проводнику, его сопротивлению и времени, в течение которого электрический ток поддерживается неизменным в проводнике.

Данный закон получил название закон Джоуля - Ленца, формула его выражает следующим образом:

где Q - количество выделившейся теплоты, l - ток, R - сопротивление проводника, t - время; величина k называется тепловым эквивалентом работы. Численное значение этой величины зависит от выбора единиц, в которых производятся измерения остальных величин, входящих в формулу.

Если количество теплоты измерять в калориях, ток в амперах, сопротивление в Омах, а время в секундах, то k численно равно 0,24. Это значит, что ток в 1а выделяет в проводнике, который обладает сопротивлением в 1 Ом, за одну секунду число теплоты, которое равно 0,24 ккал. Исходя из этого, количество теплоты в калориях, выделяющееся в проводнике, может быть рассчитано по формуле:

В системе единиц СИ энергия, количество теплоты и работа измеряются единицами - джоулями. Поэтому коэффициент пропорциональности в законе Джоуля - Ленца равен единице. В этой системе формула Джоуля - Ленца имеет вид:

Закон Джоуля - Ленца можно проверить на опыте. По проволочной спиральке, погружённой в жидкость, налитую в калориметр, пропускается некоторое время ток. Затем подсчитывается количество теплоты, выделившейся в калориметре. Сопротивление спиральки известно заранее, ток измеряется амперметром и время секундомером. Меняя ток в цепи и используя различные спиральки, можно проверить закон Джоуля - Ленца.

На основании закона Ома

Подставляя значение тока в формулу (2), получим новое выражение формулы для закона Джоуля - Ленца:

Формулой Q = l²Rt удобно пользоваться при расчёте количества теплоты, выделяемого при последовательном соединении, потому что в этом случае во всех проводниках одинаков. Поэтому, когда происходит нескольких проводников, в каждом из них будет выделено такое количество теплоты, которое пропорционально сопротивлению проводника. Если соединить, например, последовательно три проволочки одинаковых размеров - медную, железную и никелиновую, то наибольшее количество теплоты будет выделяться из никелиновой, так как её наибольшее, она сильнее и нагревается.

Если то электрический ток в них будет различен, а напряжение на концах таких проводников одно и то же. Расчёт количества теплоты, которое будет выделяться при таком соединении, лучше вести, используя формулу Q = (U²/R)t.

Эта формула показывает, что при параллельном соединении каждый проводник выделит такое количество теплоты, которое будет обратно пропорционально его проводимости.

Если соединить три одинаковой толщины проволоки - медную, железную и никелиновую - параллельно между собой и пропустить через них ток, то наибольшее количество теплоты выделится в она и нагреется сильнее остальных.

Беря за основу закон Джоуля - Ленца, производят расчёт различных электроосветительных установок, отопительных и нагревательных электроприборов. Также широко используется преобразование энергии электричества в тепловую.

В 1841 и 1842 года независимо друг от друга английский и русский физики установили зависимость количества тепла от протекания тока в проводнике. Эту зависимость назвали «Закон Джоуля-Ленца». Англичанин установил зависимость на год раньше, чем русский, но название закон получил от фамилий обоих ученных, потому как их исследования были независимы. Закон не носит теоретический характер, но имеет большое практическое значение. И так давайте кратко и понятно узнаем определение закона Джоуля-Ленца и где он применяется.

Формулировка

В реальном проводнике при протекании через него тока выполняется работа против сил трения. Электроны движутся через провод и сталкиваются с другими электронами, атомами и прочими частицами. В результате этого выделяется тепло. Закон Джоуля-Ленца описывает количество тепла, выделяемое при протекании тока через проводник. Оно прямо пропорционально зависит от силы тока, сопротивления и времени протекания.

В интегральной форме Закон Джоуля-Ленца выглядит так:

Сила тока обозначается буквой I и выражается в Амперах, Сопротивление - R в Омах, а время t - в секундах. Единица измерения теплоты Q — Джоуль, чтобы перевести в калории нужно умножить результат на 0,24. При этом 1 калория равна количеству теплоты, которое нужно подвести к чистой воде, чтобы увеличить её температуру на 1 градус.

Такая запись формулы справедлива для участка цепи при последовательном соединении проводников, когда в них протекает одна величина тока, но падает на концах различное напряжение. Произведение силы тока в квадрате на сопротивление равняется мощности. В то же время мощность прямо пропорциональна квадрату напряжения и обратно пропорциональна сопротивлению. Тогда для электрической цепи при параллельном соединении можно Закон Джоуля-Ленца можно записать в виде:

В дифференциальной форме он выглядит следующим образом:

Где j - плотность тока А/см 2 , E - напряженность электрического поля, сигма - удельное сопротивление проводника.

Стоит отметить что для однородного участка цепи сопротивление элементов будет одинаковым. Если в цепи присутствуют проводники с разным сопротивлением возникает ситуация, когда максимальное количество тепла выделяется на том, который имеет самое большое сопротивление, о чем можно сделать вывод, проанализировав формулу Закона Джоуля-Ленца.

Частые вопросы

Как найти время? Здесь имеется в виду период протекания тока через проводник, то есть когда цепь замкнута.

Как найти сопротивление проводника? Для определения сопротивления используют формулу, которую часто называют “рельс”, то есть:

Здесь буквой «Ро» обозначается удельное сопротивление, оно измеряется в Ом*м/см2, l и S это длина и площадь поперечного сечения. При вычислениях метры и сантиметры квадратные сокращаются и остаются Омы.

Удельное сопротивление - это табличная величина и для каждого металла она своя. У меди на порядки меньше, чем у высокоомных сплавов типа вольфрама или нихрома. Для чего это применяется мы рассмотрим ниже.

Перейдем к практике

Закон Джоуля-Ленца имеет большое значение для электротехнических расчетов. В первую очередь вы можете его применить при расчете нагревательных приборов. В качестве нагревательного элемента чаще всего применяется проводник, но не простой (типа меди), а с высоким сопротивлением. Чаще всего это нихром или кантал, фехраль.

Они имеют большое удельное сопротивление. Вы можете использовать и медь, но тогда вы потратите очень много кабеля (сарказм, медь не используют в этих целях). Чтобы рассчитать мощность тепла для нагревательного прибора вам нужно определится, какое тело и в каких объемах вам нужно нагреть, учесть количество требуемой теплоты и за какое время её нужно передать телу. После расчетов и преобразований вы получите сопротивление и силу тока в этой цепи. На основании полученных данных по удельному сопротивлению подбираете материал проводника, его сечение и длину.

Закон Джоуля-Ленца при передаче электричества на расстояние

При возникает существенная проблема - потери на линиях передачи (ЛЭП). Закон Джоуля-Ленца описывает количество тепла, выделенного проводником при протекании тока. ЛЭП питают целые предприятия и города, а для этого нужна большая мощность, как следствие большой ток. Так как количество теплоты зависит от сопротивления проводника и тока, чтобы кабеля не грелись нужно уменьшить количество тепла. Увеличить сечение проводов не всегда можно, т.к. это затратно в плане стоимости самой меди и веса кабеля, что влечет за собой удорожание несущей конструкции. Высоковольтные линии электропередач изображены ниже. Это массивные металлоконструкции, созданные чтобы поднять кабеля на безопасную высоту над землей, с целью избежания поражения электрическим током.

Поэтому нужно снизить ток, чтобы это сделать повышают напряжение. Между городами линии электропередач обычно имеют напряжение 220 или 110 кВ, а у потребителя понижается до нужной величины с помощью трансформаторных подстанций (КТП) или целым рядом КТП постепенно понижая до более безопасных для передачи величин, например 6 кВ.

Таким образом при той же потребляемой мощности при напряжении в 380/220 В ток снизится в сотни и тысячи раз ниже. А по закону Джоуля-Ленца количество тепла в этом случае определяется мощностью, которая теряется на кабеле.

Плавкие вставки и предохранители

Закон Джоуля-Ленца применяется при расчете плавких предохранителей. Это такие элементы, которые защищают электрическое или электронное устройство от чрезмерных для него токов, которые могут возникнуть в следствии скачка питающего напряжения,

Двигаясь в любом проводнике, электрический ток передает ему какую-то энергию, из-за чего проводник нагревается. Энергетическая передача осуществляется на уровне молекул: в результате взаимодействия электронов тока с ионами или атомами проводника часть энергии остается у последнего.

Тепловое действие тока приводит к более быстрому движению частиц проводника. Тогда его возрастает и трансформируется в тепловую.

Формула расчета и ее элементы

Тепловое действие тока может быть подтверждено разными опытами, где работа тока переходит во внутреннюю проводниковую энергию. При этом последняя возрастает. Затем проводник отдает ее окружающим телам, то есть осуществляется теплопередача с нагреванием проводника.

Формула для расчета в этом случае следующая: A=U*I*t.

Количество теплоты можно обозначить через Q. Тогда Q=A или Q=U*I*t. Зная, что U=IR, получается Q=I 2 *R*t, что и было сформулировано в законе Джоуля-Ленца.

Закон теплового действия тока — закон Джоуля-Ленца

Проводник, где протекает изучали многие ученые. Однако, самых заметных результатов удалось добиться из Англии и Эмилию Христиановичу Ленцу из России. Оба ученых работали отдельно и выводы по результатам экспериментов делали независимо один от другого.

Они вывели закон, позволяющий оценить тепло, получаемое в результате действия тока на проводник. Его назвали законом Джоуля-Ленца.

Рассмотрим на практике тепловое действие тока. Примеры возьмем следующие:

  1. Обычную лампочку.
  2. Нагревательные приборы.
  3. Предохранитель в квартире.
  4. Электрическую дугу.

Лампочка накаливания

Тепловое действие тока и открытие закона способствовали развитию электротехники и увеличению возможностей для использования электричества. То, как применяются результаты исследований, можно рассмотреть на примере обычной лампочки накаливания.

Она устроена таким образом, что внутри протягивается нить, изготовленная из вольфрамовой проволоки. Этот металл является тугоплавким с высоким удельным сопротивлением. При проходе через лампочку осуществляется тепловое действие электрического тока.

Энергия проводника трансформируется в тепловую, спираль нагревается и начинает светиться. Недостаток лампочки заключается в больших энергетических потерях, так как лишь за счет незначительной части энергии она начинает светиться. Основная же часть просто нагревается.

Чтобы лучше это понять, вводится который демонстрирует эффективность работы и преобразования в электроэнергию. КПД и тепловое действие тока используются в разных областях, так как имеется множество устройств, изготовленных на основании этого принципа. В большей степени это нагревательные приборы, электрические плиты, кипятильники и другие подобные аппараты.

Устройство обогревательных приборов

Обычно в конструкции всех приборов для нагревания есть металлическая спираль, в функцию которой и входит нагрев. Если нагревается вода, то спираль устанавливается изолированно, и в таких приборах предусматривается соблюдение баланса между энергией из сети и тепловым обменом.

Перед учеными постоянно ставится задача по снижению энергетических потерь и поиску лучших путей и наиболее эффективных схем их внедрения, чтобы уменьшить тепловое действие тока. Используется, например, способ повышения напряжения во время благодаря чему сокращается сила тока. Но такой способ, в то же время, понижает безопасность функционирования линий электропередач.

Другим исследовательским направлением является выбор проводов. Ведь именно от их свойств зависят потери тепла и другие показатели. Кроме того, при работе нагревательных приборов происходит большое выделение энергии. Поэтому спирали изготавливаются из специально предназначенных для этих целей, способных выдержать высокие нагрузки, материалов.

Квартирные предохранители

Чтобы улучшить защиту и обезопасить электрические цепи, используются особые предохранители. В роли главной части выступает проволока из легкоплавкого металла. Она проходит в пробке из фарфора, имеет винтовую нарезку и контакт в центре. Пробку вставляют в патрон, расположенный в фарфоровой коробке.

Свинцовая проволока является частью общей цепи. Если тепловое действие электрического тока резко возрастет, сечение проводника не выдержит, и он начнет плавиться. В результате этого сеть разомкнется, и не случится токовых перегрузок.

Электрическая дуга

Электрическая дуга является довольно эффективным преобразователем электрической энергии. Она используется при сварке металлических конструкций, а также служит мощным световым источником.

В основу устройства входит следующее. Берут два угольных стержня, подсоединяют провода и прикрепляют их в изолирующих держателях. После этого стержни подключают к источнику тока, который дает малое напряжение, но рассчитан на большую силу тока. Подключают реостат. Угли в городскую сеть включать запрещается, так как это может стать причиной пожара. Если коснуться одним углем о другой, то можно заметить, как сильно они раскалятся. Лучше не смотреть на это пламя, потому что оно вредно для зрения. Электрическую дугу используют в печах для плавки металла, а также в таких мощных осветительных приборах, как прожекторы, кинопроекторы и прочее.