Что такое кровь краткое определение. Где кровь разрушается? В крови имеются форменные элементы трёх типов

Для нормального функционирования человеческого организма как единого целого необходимо наличие связи между всеми его органами. Важнейшее значение в этом отношении имеет циркуляция жидкостей в организме, прежде всего крови и лимфы. Кровь переносит гормоны и биологически активные вещества, участвующие в регуляции деятельности организма. В крови и лимфе находятся специальные клетки, выполняющие защитные функции. Наконец, эти жидкости играют важную роль в поддержании физико-химических свойств внутренней среды организма, что обеспечивает существование клеток организма в относительно постоянных условиях и уменьшает влияние на них внешней среды.

Кровь состоит из плазмы и форменных элементов - клеток крови. К последним относятся эритроциты - красные кровяные клетки, лейкоциты - белые кровяные клетки и тромбоциты - кровяные пластинки (рис. 1). Общее количество крови у взрослого человека - 4-6 л (около 7% массы тела). У мужчин крови несколько больше - в среднем 5,4 л, у женщин - 4,5 л. Потеря 30% крови опасна, 50% - смертельна.

Плазма
Плазма - это жидкая часть крови, на 90-93% состоящая из воды. По существу, плазма является межклеточным веществом жидкой консистенции. В плазме содержится 6,5-8% белков, еще 2-3,5% составляют другие органические и неорганические соединения. Белки плазмы, альбумины и глобулины, выполняют трофическую, транспортную, защитную функции, участвуют в свертывании крови и создают определенное осмотическое давление крови. В плазме присутствуют глюкоза (0,1%), аминокислоты, мочевина, мочевая кислота, липиды. Неорганические вещества составляют менее 1% (ионы Na, K, Mg, Ca, Cl, P и др.).

Эритроциты (от греч. erythros - красный) - высокоспециализированные клетки, предназначенные для переноса газообразных веществ. Эритроциты имеют форму двояковогнутых дисков диаметром 7-10 мкм, толщиной 2-2,5 мкм. Такая форма увеличивает поверхность для диффузии газов, а также делает эритроцит легко деформируемым при движении по узким извитым капиллярам. Эритроциты не имеют ядра. Они содержат белок гемоглобин , с помощью которого и осуществляется перенос дыхательных газов. Небелковая часть гемоглобина (гем) имеет ион железа.

В капиллярах легких гемоглобин образует непрочное соединение с кислородом - оксигемоглобин (рис. 2). Кровь, насыщенная кислородом, называется артериальной и имеет ярко-алый цвет. Эта кровь по сосудам доставляется каждой клетке человеческого тела. Оксигемоглобин отдает клеткам тканей кислород и соединяется с поступившим из них углекислым газом. Бедная кислородом кровь имеет темный цвет и называется венозной. По сосудистой системе венозная кровь от органов и тканей доставляется в легкие, где вновь насыщается кислородом.

У взрослых людей эритроциты образуются в красном костном мозге, который находится в губчатом веществе костей. В 1 л крови содержится 4,0-5,0´1012 эритроцитов. Общее количество эритроцитов взрослого человека достигает 25´1012, а площадь поверхности всех эритроцитов - около 3800 м2. При уменьшении числа эритроцитов в крови или снижении количества гемоглобина в эритроцитах нарушается снабжение тканей кислородом и развивается анемия - малокровие (см. рис. 2).

Продолжительность циркуляции эритроцитов в крови составляет около 120 дней, после чего они разрушаются в селезенке и печени. Ткани других органов также способны при необходимости разрушать эритроциты, о чем свидетельствует постепенное исчезновение кровоизлияний (синяков).

Лейкоциты
Лейкоциты (от греч. leukos - белый) - имеющие ядро клетки размером 10-15 мкм, которые могут самостоятельно двигаться. Лейкоциты содержат большое количество ферментов, способных расщеплять различные вещества. В отличие от эритроцитов, которые работают, находясь внутри кровеносных сосудов, лейкоциты осуществляют свои функции непосредственно в тканях, куда попадают через межклеточные щели в стенке сосудов. В 1 л крови взрослого человека содержится 4,0-9,0´109 лейкоцитов, количество может меняться в зависимости от состояния организма.

Различают несколько типов лейкоцитов. К так называемым зернистым лейкоцитам относят нейтрофильные, эозинофильные и базофильные лейкоциты, к незернистым - лимфоциты и моноциты. Лейкоциты образуются в красном костном мозге, а незернистые лейкоциты - еще и в лимфатических узлах, селезенке, миндалинах, тимусе (вилочковая железа). Продолжительность жизни большинства лейкоцитов - от нескольких часов до нескольких месяцев.

Нейтрофильные лейкоциты (нейтрофилы) составляют 95% зернистых лейкоцитов. Они циркулируют в крови не более 8-12 ч, а затем мигрируют в ткани. Нейтрофилы разрушают своими ферментами бактерии и продукты распада тканей. Известный русский ученый И.И. Мечников назвал явление разрушения лейкоцитами чужеродных тел фагоцитозом, а сами лейкоциты - фагоцитами. При фагоцитозе нейтрофилы погибают, а выделяемые ими ферменты разрушают окружающие ткани, способствуя формированию гнойника. Гной состоит главным образом из остатков нейтрофилов и продуктов распада ткани. Количество нейтрофилов в крови резко возрастает при острых воспалительных и инфекционных заболеваниях.

Эозинофильные лейкоциты (эозинофилы) - это около 5% всех лейкоцитов. Особенно много эозинофилов в слизистой оболочке кишечника и дыхательных путей. Эти лейкоциты участвуют в иммунных (защитных) реакциях организма. Количество эозинофилов в крови увеличивается при глистных инвазиях и аллергических реакциях.

Базофильные лейкоциты составляют около 1% всех лейкоцитов. Базофилы продуцируют биологически активные вещества гепарин и гистамин. Гепарин базофилов препятствует свертыванию крови в очаге воспаления, а гистамин расширяет капилляры, что способствует процессам рассасывания и заживления. Базофилы также осуществляют фагоцитоз и участвуют в аллергических реакциях.

Число лимфоцитов достигает 25-40% всех лейкоцитов, но в лимфе они преобладают. Различают Т-лимфоциты (образуются в тимусе) и В-лимфоциты (образуются в красном костном мозге). Лимфоциты выполняют важные функции в реакциях иммунитета.

Моноциты (1-8% лейкоцитов) пребывают в кровеносной системе 2-3 дня, после чего мигрируют в ткани, где превращаются в макрофаги и выполняют свою главную функцию - защиту организма от чужеродных веществ (участвуют в иммунных реакциях).

Тромбоциты
Тромбоциты - мелкие тельца различной формы, размером 2-3 мкм. Количество их достигает 180,0-320,0´109 в 1 л крови. Тромбоциты участвуют в свертывании крови и остановке кровотечений. Продолжительность жизни тромбоцитов - 5-8 дней, после чего они попадают в селезенку и легкие, где разрушаются.

Важнейший защитный механизм, предохраняющий организм от кровопотерь. Это остановка кровотечения путем образования сгустка крови (тромб), плотно закупоривающего отверстие в поврежденном сосуде. У здорового человека кровотечение при ранении мелких сосудов прекращается в течение 1-3 минут. При повреждении стенки кровеносного сосуда тромбоциты склеиваются и прилипают к краям раны, из тромбоцитов высвобождаются биологически активные вещества, которые вызывают сужение сосудов.

При более значительных повреждениях остановка кровотечения происходит в результате сложного многоступенчатого процесса ферментативных цепных реакций. Под влиянием внешних причин в поврежденных сосудах активизируются факторы свертывания крови: белок плазмы протромбин, образующийся в печени, превращается в тромбин, который, в свою очередь, вызывает образование из растворимого белка плазмы фибриногена нерастворимого фибрина. Нити фибрина формируют основную часть тромба, в которой застревают многочисленные клетки крови (рис. 3). Образовавшийся тромб закупоривает место повреждения. Свертывание крови происходит за 3-8 минут, однако при некоторых заболеваниях это время может увеличиваться или уменьшаться.

Группы крови

Практический интерес представляет знание группы крови . В основе деления на группы лежат разные типы сочетаний антигенов эритроцитов и антител плазмы, которые являются наследственным признаком крови и формируются на начальных этапах развития организма.

Принято выделять четыре основные группы крови по системе АВ0: 0(I), А(II), B(III) и AB(IV), что учитывается при ее переливании. В середине XX века предполагалось, что кровь группы 0(I)Rh- совместима с любыми другими группами. Люди с 0(I) группой крови считались универсальными донорами, и их кровь могла быть перелита любому нуждающемуся, а им самим - только кровь I группы. Люди, имеющие IV группу крови, считались универсальными реципиентами, им вводили кровь любой группы, но их кровь - только людям с IV группой.

Сейчас в России по жизненным показаниям и при отсутствии одногруппных по системе АВ0 компонентов крови (за исключением детей) допускается переливание резус-отрицательной крови 0(I) группы реципиенту с любой другой группой крови в количестве до 500 мл. При отсутствии одногруппной плазмы реципиенту может быть перелита плазма группы АВ(IV).

При несовпадении групп крови донора и реципиента происходит склеивание эритроцитов переливаемой крови и их последующее разрушение, что может привести к смерти реципиента.

В феврале 2012 года, ученые из США в сотрудничестве с японскими и французскими коллегами, открыли две новые «дополнительные» группы крови, включающие два белка на поверхности эритроцитов — ABCB6 и ABCG2. Они относятся к транспортным белкам - участвуют в переносе метаболитов, ионов внутри клетки и из нее.

К настоящему времени известно более 250 антигенов групп крови, объединенных в 28 дополнительных систем в соответствии с закономерностями их наследования, большинство из которых встречается гораздо реже, чем AB0 и резус-фактор.

Резус-фактор

При переливании крови учитывается также резус-фактор (Rh-фактор). Как и группы крови, он был открыт венским ученым К. Ландштейнером. Этот фактор имеют 85% людей, их кровь - резус-положительная (Rh+); у других этот фактор отсутствует, их кровь - резус-отрицательная (Rh-). Тяжелые последствия имеет переливание крови донора с Rh+ человеку с Rh-. Резус-фактор имеет значение для здоровья новорожденного и при повторной беременности резус-отрицательной женщины от резус-положительного мужчины.

Лимфа

Лимфа оттекает из тканей по лимфатическим сосудам, являющимся частью сердечно-сосудистой системы. По составу лимфа напоминает плазму крови, однако в ней меньше белков. Лимфа образуется из тканевой жидкости, которая, в свою очередь, возникает за счет фильтрации плазмы крови из кровеносных капилляров.

Исследование крови

Исследование крови имеет большое диагностическое значение. Изучение картины крови проводится по многим показателям, среди которых количество клеток крови, уровень гемоглобина, содержание различных веществ в плазме и др. Каждый показатель, взятый отдельно, сам по себе не специфичен, а получает определенное значение только в совокупности с другими показателями и в связи с клинической картиной заболевания. Именно поэтому каждый человек в течение жизни неоднократно сдает каплю своей крови на анализ. Современные методы исследования позволяют на основании изучения одной лишь этой капли многое понять в состоянии здоровья человека.


это разновидность соединительной ткани с жидким межклеточным веществом (плазмой) - 55% и взвешенных в ней форменных элементов (эритроцитов, лейкоцитов и тромбоцитов) - 45%. Основные компоненты плазмы - это вода (90-92%), остальные белки и минеральные вещества. Благодаря наличию белков в крови вязкость ее выше воды (примерно в 6 раз). Состав крови относительно стабилен и имеет слабую щелочную реакцию.
Эритроциты - красные кровяные клетки, они являются носителем красного пигмента - гемоглобина. Гемоглобин уникален тем, что обладает способностью к образованию веществ в комплексе с кислородом. Гемоглобин составляет почти 90% в эритроцитах и служит переносчиком кислорода из легких ко всем тканям. В 1 куб. мм крови у мужчин в среднем 5 млн. эритроцитов, у женщин - 4,5 млн. У людей, занимающихся спортом, эта величина достигает 6 млн. и более. Эритроциты образуются в клетках красного костного мозга.
Лейкоциты - белые кровяные клетки. Они далеко не так многочисленны, как эритроциты. В 1 куб. мм крови содержится 6-8 тысяч белых кровяных клеток. Основная функция лейкоцитов - защита организма от возбудителей болезней. Особенностью лейкоцитов является способность проникать к местам скопления микробов из капилляров в межклеточное пространство, где они выполняют свои защитные функции. Продолжительность их жизни 2-4 дня. Их число все время пополняется за счет вновь образующихся из клеток костного мозга, селезенки и лимфатических узлов.
Тромбоциты - кровяные пластинки, основная функция которых - обеспечение свертываемости крови. Кровь свертывается вследствие разрушения тромбоцитов и превращения растворимого белка плазмы фибриногена в нерастворимый фибрин. Волокна белка вместе с кровяными клетками формируют сгустки, закупоривающие просветы кровеносных сосудов.
Под влиянием систематических тренировок увеличивается число эритроцитов и содержание гемоглобина в крови, в результате чего повышается кислородная емкость крови. Повышается сопротивляемость организма к простудным и инфекционным заболеваниям из-за повышения активности лейкоцитов.
Основные функции крови:
- транспортная - доставляет клеткам питательные вещества и кислород, удаляет из организма продукты распада при обмене веществ;
- защитная - защищает организм от вредных веществ и инфекции, за счет наличия механизма свертывания останавливает кровотечение;
- теплообменная - участвует в поддержании постоянной температуры тела.

Центром кровеносной системы является сердце, выполняющее роль двух насосов. Правая сторона сердца (венозная) продвигает кровь по малому кругу кровообращения, левая (артериальная)- по большому кругу. Малый круг кровообращения начинается от правого желудочка сердца, затем венозная кровь поступает в легочный ствол, который разделяется на две легочные артерии, которые делятся на более мелкие артерии, переходящие в капилляры альвеол, в которых происходит газообмен (кровь отдает углекислый газ и обогащается кислородом). Из каждого легкого выходит по две вены, впадающие в левое предсердие. Большой круг кровообращения начинается от левого желудочка сердца. Обогащенная кислородом и питательными веществами артериальная кровь поступает ко всем органам и тканям, где происходит газообмен и обмен веществ. Забрав из тканей углекислый газ и продукты распада, венозная кровь, собирается в вены и двигается к правому предсердию.
По кровеносной системе перемещается кровь, которая бывает артериальной (насыщенной кислородом) и венозной (насыщенной углекислым газом).
У человека существуют три типа кровеносных сосудов: артерии, вены, капилляры. Артерии и вены отличаются друг от друга направлением движения крови в них. Таким образом, артерия – это любой сосуд, несущий кровь от сердца к органу, а вена – несущий кровь от органа к сердцу, независимо от состава крови (артериальная или венозная) в них. Капилляры - тончайшие сосуды, они тоньше человеческого волоса в 15 раз. Стенки капилляров полупроницаемые, через них вещества, растворенные в плазме крови, просачиваются в тканевую жидкость, из которой переходят в клетки. Продукты обмена клеток проникают в обратном направлении из тканевой жидкости в кровь.
Кровь движется по сосудам от сердца под воздействием давления, создаваемого сердечной мышцей в момент ее сокращения. На возвратное движение крови по венам оказывают влияние несколько факторов:
- во-первых, венозная кровь продвигается к сердцу под действием сокращений скелетных мышц, которые как бы выталкивают кровь из вен в сторону сердца, при этом обратное движение крови исключается, так как клапаны, находящиеся в венах, пропускают кровь только в одном направлении - к сердцу.
Механизм принудительного продвижения венозной крови к сердцу с преодолением сил гравитации под воздействием ритмических сокращений и расслаблений скелетных мышц называется мышечным насосом.
Таким образом, скелетные мышцы при циклических движениях существенно помогают сердцу обеспечивать циркуляцию крови в сосудистой системе;
- во-вторых, при вдохе происходит расширение грудной клетки и в ней создается пониженное давление, которое обеспечивает подсасывание венозной крови к грудному отделу;
- в-третьих, в момент систолы (сокращения) сердечной мышцы при расслаблении предсердий в них также возникает подсасывающий эффект, способствующий движению венозной крови к сердцу.
Сердце - центральный орган системы кровообращения. Сердце представляет собой полый четырехкамерный мышечный орган, расположенный в грудной полости, разделенный вертикальной перегородкой на две половины - левую и правую, каждая из которых состоит из желудочка и предсердия. Сердце работает автоматически под контролем центральной нервной системы.
Волна колебаний, распространяемая по эластичным стенкам артерий в результате гидродинамического удара порции крови, выбрасываемой в аорту при сокращении левого желудочка, называется частотой сердечных сокращений (ЧСС).
ЧСС взрослого мужчины в покое составляет 65-75 уд/мин., у женщин на 8-10 ударов больше, чем у мужчин. У тренированных спортсменов ЧСС в покое становится реже за счет увеличения мощности каждого сердечного сокращения и может достигать 40-50 уд/мин.
Количество крови, выталкиваемое желудочком сердца в сосудистое русло при одном сокращении, называется систолическим (ударным) объемом крови. В состоянии покоя он составляет у нетренированных – 60, у тренированных-80 мл. При физической нагрузке у нетренированных возрастает до 100-130 мл., а у тренированных до 180-200 мл.
Количество крови, выбрасываемое одним желудочком сердца в течение одной минуты, называется минутным объемом крови. В состоянии покоя этот показатель равен в среднем 4-6 л. При физической нагрузке он повышается у нетренированных до 18-20 л., а у тренированных до 30-40 л.
При каждом сокращении сердца поступающая в систему кровообращения кровь создает в ней давление, зависящее от эластичности стенок сосудов. Его величина в момент сердечного сокращения (систолы) составляет у молодых людей 115-125 мм рт. ст. Минимальное (диастолическое) давление в момент расслабления сердечной мышцы составляет - 60-80 мм рт. ст. Разница между максимальным и минимальным давлением называется пульсовым давлением. Оно составляет примерно 30-50 мм рт. ст.
Под воздействием физической тренировки размеры и масса сердца увеличиваются в связи с утолщением стенок сердечной мышцы и увеличением его объема. Мышца тренированного сердца более густо пронизана кровеносными сосудами, что обеспечивает лучшее питание мышечной ткани и ее работоспособность.

Кроме транспортировки различных питательных веществ и кислорода от одних органов к другим, с помощью циркуляции крови в организме осуществляется перенос продуктов обмена веществ и угольной к тем органам, через которые происходит вывод продуктов жизнедеятельности: почкам, кишечнику, легким и коже. Кровь также выполняет и защитные функции – белые и белковые вещества, содержащиеся в плазме, участвуют в нейтрализации токсинов и поглощении микробов, попадающих в организм. Посредством крови эндокринная система осуществляет регуляцию всех жизненных функций и процессов, поскольку , вырабатываемые железами внутренней секреции, также транспортируются кровотоком.

Лимфа, тканевая жидкость и кровь составляют внутреннюю среду организма, постоянство ее состава и физико-химических характеристик поддерживается механизмами регуляции и являются показателем здоровья. В случае возникновения патологических или воспалительных процессов, связанных с тем или иным заболеванием, изменяется и состав крови, поэтому ее – первое, что потребуется врачу для постановки диагноза.


Опасным для человека является быстрое снижение количества крови, например, в случае открытой раны, являющееся причиной резкого падения кровяного .

Поскольку по своему составу кровь , в которой во взвешенном состоянии находятся форменные элементы, ее состав определяется методом центрифугирования. В крови человека составляет порядка 55-58%, а остальные форменные элементы - от 42 до 45%, причем в крови их немного больше, чем в крови .


крови содержится в теле человека

В настоящее время количество крови, циркулирующей в теле человека, определяется с достаточно высокой степенью точности. Для этого используется метод, когда в кровь вводится дозированное количество -либо вещества, которое не сразу выводится из ее состава. После того как оно через какое-то время равномерно распределяется по всей кровеносной системе, берут пробу и определяют его концентрацию в крови. Чаще всего в качестве такого вещества используется безвредный для организма коллоидный краситель, например, конго-рот. Еще одним способом для определения количества крови в теле человека является введение в кровь искусственных радиоактивных изотопов. После некоторых манипуляций с кровью, удается подсчитать количество эритроцитов, в которые проникли изотопы, а затем по значению радиоактивности крови и ее объем.

Если в крови образуется излишек жидкости, она перераспределяется в кожу и мышечные ткани, а также выводится через почки.

Как было выяснено, в среднем количество крови составляет около 7% от веса, если ваш вес составляет 60 кг, объем крови будет равен 4,2 литра, 5-ти литровый объем циркулирует в теле человека, весящего 71,5 кг. Объем ее может колебаться от 5 до 9%, но, как правило, эти колебания носят кратковременный характер и связаны с потерей жидкости или, наоборот, введением ее в кровь, а также с обильными кровотечениями. Но механизмы регулирования, действующие в организме, поддерживают количество общего объема крови в нем постоянным.

Кровь относится к жидким соединительным тканям. Она выполняет множество функций для организма и необходима для поддержания жизнедеятельности. Потеря большого количества крови опасна для жизни.

Зачем нужна кровь

Кровь вместе с лимфой и межтканевой жидкостью составляет внутреннюю среду организма. Она несет тканям кислород и питательные вещества, удаляет углекислый газ и продукты обмена, вырабатывает антитела, гормоны, регулирующие различных систем.

Кровь обеспечивает постоянство состава внутренней среды. В зависимости от того, какие вещества она переносит, различают дыхательную, питательную, выделительную, регуляторную, гомеостатическую, терморегуляторную и защитную функции крови.

Связываясь с кислородом и доставляя его от к тканям и органам, а углекислый газ – от периферических тканей к легким, кровь выполняет дыхательную функцию. В транспорте продуктов обмена ( , и других) к выделительным органам (почкам, кишечнику, коже) заключается выделительная функция крови. Перемещением глюкозы, аминокислот и прочих питательных веществ к тканям и органам кровь осуществляет питание организма.

Гомеостаз – это постоянство внутренней среды. Гомеостатическая функция крови заключается в равномерном распределении крови между тканями и органами, поддержании постоянного осмотического давления и уровня pH. Без переноса кровью , выработанных железами внутренней секреции, к органам-мишеням было бы невозможно осуществление гуморальной регуляции.

Защитная роль крови заключается в формировании антител, обезвреживании микроорганизмов и их токсинов, удалении продуктов распада тканей, образовании тромбов, препятствующих кровопотере. Терморегуляторная функция реализуется путем равномерного распределения тепла в организме и переноса тепла из внутренних органов к сосудам кожи.


Кровь обладает высокой теплоемкостью и теплопроводностью, что позволяет сохранять тепло в теле и при перегреве отводить его наружу – к поверхности кожи.

Если вы хотите узнать о своем организме как можно больше информации, обратите внимание на наиболее интересные факты о крови человека:

  1. Содержание крови составляет около 5-8% от массы тела человека . Для ребенка удельный вес ее содержания повышается до 9-10%.
  2. Учеными доказано, что сердце здорового взрослого человека способно перекачивать ежедневно до 12 литров , а каждый сердечный удар способствует выбросу в среднем 130 мл.

  3. Человечеству уже довольно давно было известно о том, состав крови, насыщенность ее оттенка у разных людей могут различаться. Но четыре известные на сегодняшний день группы крови были открыты только в 1930 году Карлом Ландштайнером . За революционное исследование он был удостоен Нобелевской премии. А уже в 1940 году он открыл резус-фактор совместно с другими не менее известными и выдающими учеными того времени.

  4. Японские ученые выявили некую взаимосвязь между группой крови человека и его характером . Твердость характера, предприимчивость и самоуверенность присущи обладателям первой группы, скрытность и замкнутость – второй, острота ума и порядочность – третьей, а степенность и уравновешенность – четвертой. Японцы настолько уверены в объективности и истинности данной информации, что при приеме на работе учитывают и группу крови человека, могут даже отказать ему, если некоторые особенности характера будут мешать производственным успехам.

  5. Насыщенный красный оттенок крови обеспечен содержанием в ней огромного количества эритроцитов . Они приобретают подобный окрас от гемоглобина. Гемоглобин обогащает кровь железом, является источником белка, снабжает организм кислородом и газами.

  6. Имеет ли место быть высказывание «голубая кровь» ? История его появления имеет несколько версий. Основная из них относится к Испании, 18 веку, когда бледная и полупрозрачная кожа являлась признаком принадлежности к аристократическому роду. На самом деле фактов реального существования кровяных телец голубого оттенка на сегодняшний день обнаружено не было.

  7. 74-летний житель Австралии Джеймс Харрисон за всю свою жизни становился донором около тысячи раз, за что получил звание почетного донора . Его кровь обогащена содержанием особых антител, помогающих бороться с тяжелыми формами анемии у новорожденных. По оценкам экспертов донор помог спасти жизнь более 2 000 новорожденных.

  8. В расслабленном состоянии 25% крови перемещается по мышечным тканям и почкам , 15% содержится в стенках кишечника, 13% - в сосудах, 10% - в печени, 7% - в коре мозга и 4% в сердечных и венозных сосудах.

  9. Каждый час у здорового человека погибает около 5 млрд лейкоцитов, 2 млрд тромбоцитов и 1 млрд эритроцитов . На смену им костный мозг и селезенка вырабатывают новые клетки. Таким образом, каждые сутки за счет этого обновляется около 30 г крови. Процесс носит регулярный и непрерывный характер, что в итоге и позволяет организму работать по принципу часов.

  10. Добиться нормального функционирования организма взрослого человека удается только в том случае, если кровь подается сердцем непрерывным потоком , а не пульсирующими толчками.

  11. Роговица глаза – единственный участок человеческого тела, лишенный кровеносной системы . Для того чтобы сохранить прозрачность роговицы, обогащение кислородом ее происходит не за счет кровяных телец, а слез, в которых растворяется кислород, полученный из воздуха.

  12. Совсем недавно ученым удалось установить идентичность состава крови и жидкости, содержащейся внутри неспелых кокосов . и только оставшиеся 10% наполняют соли, липиды, глюкоза, гормоны и всевозможные ферменты.

КРОВЬ
жидкость, циркулирующая в кровеносной системе и переносящая газы и другие растворенные вещества, необходимые для метаболизма либо образующиеся в результате обменных процессов. Кровь состоит из плазмы (прозрачной жидкости бледно-желтого цвета) и взвешенных в ней клеточных элементов. Имеется три основных типа клеточных элементов крови: красные кровяные клетки (эритроциты), белые кровяные клетки (лейкоциты) и кровяные пластинки (тромбоциты). Красный цвет крови определяется наличием в эритроцитах красного пигмента гемоглобина. В артериях, по которым кровь, поступившая в сердце из легких, переносится к тканям организма, гемоглобин насыщен кислородом и окрашен в ярко-красный цвет; в венах, по которым кровь притекает от тканей к сердцу, гемоглобин практически лишен кислорода и темнее по цвету. Кровь - довольно вязкая жидкость, причем вязкость ее определяется содержанием эритроцитов и растворенных белков. От вязкости крови зависят в значительной мере скорость, с которой кровь протекает через артерии (полуупругие структуры), и кровяное давление. Текучесть крови определяется также ее плотностью и характером движения различных типов клеток. Лейкоциты, например, движутся поодиночке, в непосредственной близости к стенкам кровеносных сосудов; эритроциты могут перемещаться как по отдельности, так и группами наподобие уложенных в стопку монет, создавая аксиальный, т.е. концентрирующийся в центре сосуда, поток. Объем крови взрослого мужчины составляет примерно 75 мл на килограмм веса тела; у взрослой женщины этот показатель равен примерно 66 мл. Соответственно общий объем крови у взрослого мужчины - в среднем ок. 5 л; более половины объема составляет плазма, а остальная часть приходится в основном на эритроциты.
Функции крови. Примитивные многоклеточные организмы (губки, актинии, медузы) живут в море, и "кровью" для них является морская вода. Вода омывает их со всех сторон и свободно проникает в ткани, доставляя питательные вещества и унося продукты метаболизма. Высшие организмы не могут обеспечить свою жизнедеятельность таким простым способом. Их тело состоит из миллиардов клеток, многие из которых объединены в ткани, составляющие сложные органы и органные системы. У рыб, например, хотя они и живут в воде, не все клетки находятся настолько близко к поверхности тела, чтобы вода обеспечивала эффективную доставку питательных веществ и удаление конечных продуктов метаболизма. Еще сложнее дело обстоит с наземными животными, вовсе не омываемыми водой. Ясно, что у них должна была возникнуть собственная жидкая ткань внутренней среды - кровь, а также распределительная система (сердце, артерии, вены и сеть капилляров), обеспечивающая кровоснабжение каждой клетки. Функции крови значительно сложнее, чем просто транспорт питательных веществ и отходов метаболизма. С кровью переносятся также гормоны, контролирующие множество жизненно важных процессов; кровь регулирует температуру тела и защищает организм от повреждений и инфекций в любой его части.
Транспортная функция. С кровью и кровоснабжением тесно связаны практически все процессы, имеющие отношение к пищеварению и дыханию - двум функциям организма, без которых жизнь невозможна. Связь с дыханием выражается в том, что кровь обеспечивает газообмен в легких и транспорт соответствующих газов: кислорода - от легких в ткани, диоксида углерода (углекислого газа) - от тканей к легким. Транспорт питательных веществ начинается от капилляров тонкого кишечника; здесь кровь захватывает их из пищеварительного тракта и переносит во все органы и ткани, начиная с печени, где происходит модификация питательных веществ (глюкозы, аминокислот, жирных кислот), причем клетки печени регулируют их уровень в крови в зависимости от потребностей организма (тканевого метаболизма). Переход транспортируемых веществ из крови в ткани осуществляется в тканевых капиллярах; одновременно в кровь из тканей поступают конечные продукты, которые далее выводятся через почки с мочой (например, мочевина и мочевая кислота).
См. также
ДЫХАНИЯ ОРГАНЫ ;
КРОВЕНОСНАЯ СИСТЕМА ;
ПИЩЕВАРЕНИЕ . Кровь переносит также продукты секреции эндокринных желез - гормоны - и тем самым обеспечивает связь между различными органами и координацию их деятельности (см. также ЭНДОКРИННАЯ СИСТЕМА). Регуляция температуры тела. Кровь играет ключевую роль в поддержании постоянной температуры тела у гомойотермных, или теплокровных, организмов. Температура человеческого тела в нормальном состоянии колеблется в очень узком интервале ок. 37° С. Выделение и поглощение тепла различными участками тела должны быть сбалансированы, что достигается переносом тепла с помощью крови. Центр температурной регуляции располагается в гипоталамусе - отделе промежуточного мозга. Этот центр, обладая высокой чувствительностью к небольшим изменениям температуры проходящей через него крови, регулирует те физиологические процессы, при которых выделяется или поглощается тепло. Один из механизмов состоит в регуляции тепловых потерь через кожу посредством изменения диаметра кожных кровеносных сосудов кожи и соответственно объема крови, протекающей вблизи поверхности тела, где тепло легче теряется. В случае инфекции определенные продукты жизнедеятельности микроорганизмов либо продукты вызванного ими распада тканей взаимодействуют с лейкоцитами, вызывая образование химических веществ, стимулирующих центр температурной регуляции в головном мозге. В результате наблюдается подъем температуры тела, ощущаемый как жар. Защита организма от повреждений и инфекции. В осуществлении этой функции крови особую роль играют лейкоциты двух типов: полиморфноядерные нейтрофилы и моноциты. Они устремляются к месту повреждения и накапливаются вблизи него, причем большая часть этих клеток мигрирует из кровотока через стенки близлежащих кровеносных сосудов. К месту повреждения их привлекают химические вещества, высвобождаемые поврежденными тканями. Эти клетки способны поглощать бактерии и разрушать их своими ферментами. Таким образом, они препятствуют распространению инфекции в организме. Лейкоциты принимают также участие в удалении мертвых или поврежденных тканей. Процесс поглощения клеткой бактерии или фрагмента мертвой ткани называется фагоцитозом, а осуществляющие его нейтрофилы и моноциты - фагоцитами. Активно фагоцитирующий моноцит называют макрофагом, а нейтрофил - микрофагом. В борьбе с инфекцией важная роль принадлежит белкам плазмы, а именно иммуноглобулинам, к которым относится множество специфических антител. Антитела образуются другими типами лейкоцитов - лимфоцитами и плазматическими клетками, которые активируются при попадании в организм специфических антигенов бактериального или вирусного происхождения (либо присутствующих на клетках, чужеродных для данного организма). Выработка лимфоцитами антител против антигена, с которым организм встречается в первый раз, может занять несколько недель, но полученный иммунитет сохраняется надолго. Хотя уровень антител в крови через несколько месяцев начинает медленно падать, при повторном контакте с антигеном он вновь быстро растет. Это явление называется иммунологической памятью. При взаимодействии с антителом микроорганизмы либо слипаются, либо становятся более уязвимыми для поглощения фагоцитами. Кроме того, антитела мешают вирусу проникнуть в клетки организма хозяина (см. также ИММУНИТЕТ).
рН крови. pH - это показатель концентрации водородных (H) ионов, численно равный отрицательному логарифму (обозначаемому латинской буквой "p") этой величины. Кислотность и щелочность растворов выражают в единицах шкалы рН, имеющей диапазон от 1 (сильная кислота) до 14 (сильная щелочь). В норме рН артериальной крови составляет 7,4, т.е. близок к нейтральному. Венозная кровь из-за растворенного в ней диоксида углерода несколько закислена: диоксид углерода (СО2), образующийся в ходе метаболических процессов, при растворении в крови реагирует с водой (Н2О), образуя угольную кислоту (Н2СО3). Поддержание рН крови на постоянном уровне, т.е., другими словами, кислотно-щелочного равновесия, исключительно важно. Так, если рН заметно падает, в тканях снижается активность ферментов, что опасно для организма. Изменение рН крови, выходящее за рамки интервала 6,8-7,7, несовместимо с жизнью. Поддержанию этого показателя на постоянном уровне способствуют, в частности, почки, поскольку они по мере надобности выводят из организма кислоты или мочевину (которая дает щелочную реакцию). С другой стороны, рН поддерживается благодаря присутствию в плазме определенных белков и электролитов, обладающих буферным действием (т.е. способностью нейтрализовать некоторый избыток кислоты или щелочи).
КОМПОНЕНТЫ КРОВИ
Рассмотрим более подробно состав плазмы и клеточных элементов крови.
Плазма. После отделения взвешенных в крови клеточных элементов остается водный раствор сложного состава, называемый плазмой. Как правило, плазма представляет собой прозрачную или слегка опалесцирующую жидкость, желтоватый цвет которой определяется присутствием в ней небольшого количества желчного пигмента и других окрашенных органических веществ. Однако после потребления жирной пищи в кровь попадает множество капелек жира (хиломикронов), в результате чего плазма становится мутной и маслянистой. Плазма участвует во многих процессах жизнедеятельности организма. Она переносит клетки крови, питательные вещества и продукты метаболизма и служит связующим звеном между всеми экстраваскулярными (т.е. находящимися вне кровеносных сосудов) жидкостями; последние включают, в частности, межклеточную жидкость, и через нее осуществляется связь с клетками и их содержимым. Таким образом плазма контактирует с почками, печенью и другими органами и тем самым поддерживает постоянство внутренней среды организма, т.е. гомеостаз. Основные компоненты плазмы и их концентрации приведены в табл. 1. Среди растворенных в плазме веществ - низкомолекулярные органические соединения (мочевина, мочевая кислота, аминокислоты и т.д.); большие и очень сложные по структуре молекулы белков; частично ионизированные неорганические соли. К числу наиболее важных катионов (положительно заряженных ионов) относятся катионы натрия (Na+), калия (K+), кальция (Ca2+) и магния (Mg2+); к числу важнейших анионов (отрицательно заряженных ионов) - хлорид-анионы (Cl-), бикарбонат (HCO3-) и фосфат (HPO42- или H2PO4-). Основные белковые компоненты плазмы - альбумин, глобулины и фибриноген.
Таблица 1. КОМПОНЕНТЫ ПЛАЗМЫ
(в миллиграммах на 100 миллилитров)

Натрий 310-340
Калий 14-20
Кальций 9-11
Фосфор 3-4,5
Хлорид-ионы 350-375
Глюкоза 60-100
Мочевина 10-20
Мочевая кислота 3-6
Холестерин 150-280
Белки плазмы 6000-8000
Альбумин 3500-4500
Глобулин 1500-3000
Фибриноген 200-600
Диоксид углерода 55-65
(объем в миллилитрах,
с поправкой на температуру
и давление, в расчете
на 100 миллилитров плазмы)


Белки плазмы. Из всех белков в наибольшей концентрации в плазме присутствует альбумин, синтезируемый в печени. Он необходим для поддержания осмотического равновесия, обеспечивающего нормальное распределение жидкости между кровеносными сосудами и экстраваскулярным пространством (см. ОCМОС). При голодании или недостаточном поступлении белков с пищей содержание альбумина в плазме падает, что может привести к повышенному накоплению воды в тканях (отек). Это состояние, связанное с белковой недостаточностью, называется голодным отеком. В плазме присутствуют глобулины нескольких типов, или классов, важнейшие из которых обозначаются греческими буквами a (альфа), b (бета) и g (гамма), а соответствующие белки - a1, a2, b, g1 и g2. После разделения глобулинов (методом электрофореза) антитела обнаруживаются лишь во фракциях g1, g2 и b. Хотя антитела часто называют гамма-глобулинами, тот факт, что некоторые из них присутствуют и в b-фракции, обусловил введение термина "иммуноглобулин". В a- и b-фракциях содержится множество различных белков, обеспечивающих транспорт в крови железа, витамина В12, стероидов и других гормонов. В эту же группу белков входят и факторы коагуляции, которые наряду с фибриногеном участвуют в процессе свертывания крови. Основная функция фибриногена состоит в образовании кровяных сгустков (тромбов). В процессе свертывания крови, будь то in vivo (в живом организме) или in vitro (вне организма), фибриноген превращается в фибрин, который и составляет основу кровяного сгустка; не содержащая фибриногена плазма, обычно имеющая вид прозрачной жидкости бледно-желтого цвета, называется сывороткой крови.
Эритроциты. Красные кровяные клетки, или эритроциты, представляют собой круглые диски диаметром 7,2-7,9 мкм и средней толщиной 2 мкм (мкм = микрон = 1/106 м). В 1 мм3 крови содержится 5-6 млн. эритроцитов. Они составляют 44-48% общего объема крови. Эритроциты имеют форму двояковогнутого диска, т.е. плоские стороны диска как бы сжаты, что делает его похожим на пончик без дырки. В зрелых эритроцитах нет ядер. Они содержат главным образом гемоглобин, концентрация которого во внутриклеточной водной среде ок. 34%. В пересчете на сухой вес содержание гемоглобина в эритроцитах - 95%; в расчете на 100 мл крови содержание гемоглобина составляет в норме 12-16 г (12-16 г%), причем у мужчин оно несколько выше, чем у женщин. Кроме гемоглобина эритроциты содержат растворенные неорганические ионы (преимущественно К+) и различные ферменты. Две вогнутые стороны обеспечивают эритроциту оптимальную площадь поверхности, через которую может происходить обмен газами: диоксидом углерода и кислородом. Таким образом, форма клеток во многом определяет эффективность протекания физиологических процессов. У человека площадь поверхностей, через которые совершается газообмен, составляет в среднем 3820 м2, что в 2000 раз превышает поверхность тела. В организме плода примитивные красные кровяные клетки вначале образуются в печени, селезенке и тимусе. С пятого месяца внутриутробного развития в костном мозге постепенно начинается эритропоэз - образование полноценных эритроцитов. В исключительных обстоятельствах (например, при замещении нормального костного мозга раковой тканью) взрослый организм может вновь переключиться на образование эритроцитов в печени и селезенке. Однако в нормальных условиях эритропоэз у взрослого человека идет лишь в плоских костях (ребрах, грудине, костях таза, черепа и позвоночника). Эритроциты развиваются из клеток-предшественников, источником которых служат т.н. стволовые клетки. На ранних стадиях формирования эритроцитов (в клетках, еще находящихся в костном мозге) четко выявляется клеточное ядро. По мере созревания в клетке накапливается гемоглобин, образующийся в ходе ферментативных реакций. Перед тем как попасть в кровоток, клетка утрачивает ядро - за счет экструзии (выдавливания) или разрушения клеточными ферментами. При значительных кровопотерях эритроциты образуются быстрее, чем в норме, и в этом случае в кровоток могут попадать незрелые формы, содержащие ядро; очевидно, это происходит из-за того, что клетки слишком быстро покидают костный мозг. Срок созревания эритроцитов в костном мозге - от момента появления самой юной клетки, узнаваемой как предшественник эритроцита, и до ее полного созревания - составляет 4-5 дней. Срок жизни зрелого эритроцита в периферической крови - в среднем 120 дней. Однако при некоторых аномалиях самих этих клеток, целом ряде болезней или под воздействием определенных лекарственных препаратов время жизни эритроцитов может сократиться. Большая часть эритроцитов разрушается в печени и селезенке; при этом гемоглобин высвобождается и распадается на составляющие его гем и глобин. Дальнейшая судьба глобина не прослеживалась; что же касается гема, то из него высвобождаются (и возвращаются в костный мозг) ионы железа. Утрачивая железо, гем превращается в билирубин - красно-коричневый желчный пигмент. После незначительных модификаций, происходящих в печени, билирубин в составе желчи выводится через желчный пузырь в пищеварительный тракт. По содержанию в кале конечного продукта его превращений можно рассчитать скорость разрушения эритроцитов. В среднем во взрослом организме ежедневно разрушается и вновь образуется 200 млрд. эритроцитов, что составляет примерно 0,8% общего их числа (25 трлн.).



Значение для антропологии и судебной медицины. Из описания систем АВ0 и резус ясно, что группы крови имеют значение для генетических исследований и изучения рас. Они легко определяются, причем у каждого конкретного человека данная группа либо есть, либо ее нет. Важно отметить, что хотя те или иные группы крови встречаются в разных популяциях с разной частотой, нет никаких оснований утверждать, что определенные группы дают какие-либо преимущества. А тот факт, что в крови у представителей разных рас системы групп крови практически одни и те же, делает бессмысленным разделение расовых и этнических групп по крови ("негритянская кровь", "еврейская кровь", "цыганская кровь"). Группы крови имеют важное значение в судебной медицине для установления отцовства. Например, если женщина с группой крови 0 предъявляет мужчине с группой крови В иск, что именно он является отцом ее ребенка, имеющего группу крови А, суд должен признать мужчину невиновным, так как его отцовство генетически невозможно. На основании данных о группах крови по системам АВ0, Rh и MN у предполагаемого отца, матери и ребенка, удается оправдать больше половины мужчин (51%), ложно обвиненных в отцовстве.
ПЕРЕЛИВАНИЕ КРОВИ
С конца 1930-х годов переливание крови или ее отдельных фракций получило широкое распространение в медицине, особенно в военной. Основная цель переливания крови (гемотрансфузии) - замена эритроцитов больного и восстановление объема крови после массивной кровопотери. Последняя может произойти либо спонтанно (например, при язве двенадцатиперстной кишки), либо в результате травмы, в ходе хирургической операции или при родах. Переливание крови применяют также для восстановления уровня эритроцитов при некоторых анемиях, когда организм теряет способность вырабатывать новые кровяные клетки с той скоростью, какая требуется для нормальной жизнедеятельности. Общее мнение авторитетных медиков таково, что переливание крови следует производить только в случае строгой необходимости, поскольку оно связано с риском осложнений и передачи больному инфекционного заболевания - гепатита, малярии или СПИДа.
Типирование крови. Перед переливанием определяют совместимость крови донора и реципиента, для чего проводится типирование крови. В настоящее время типированием занимаются квалифицированные специалисты. Небольшое количество эритроцитов добавляют к антисыворотке, содержащей большое количество антител к определенным эритроцитарным антигенам. Антисыворотку получают из крови доноров, специально иммунизированных соответствующими антигенами крови. Агглютинацию эритроцитов наблюдают невооруженным глазом или под микроскопом. В табл. 4 показано, как можно использовать антитела анти-А и анти-В для определения групп крови системы АВ0. В качестве дополнительной проверки in vitro можно смешать эритроциты донора с сывороткой реципиента и, наоборот, сыворотку донора с эритроцитами реципиента - и посмотреть, не будет ли при этом агглютинации. Данный тест называют перекрестным типированием. Если при смешивании эритроцитов донора и сыворотки реципиента агглютинирует хотя бы небольшое количество клеток, кровь считается несовместимой.



Переливание крови и ее хранение. Первоначальные методы прямого переливания крови от донора реципиенту отошли в прошлое. Сегодня донорскую кровь берут из вены в стерильных условиях в специально подготовленные емкости, куда предварительно внесены антикоагулянт и глюкоза (последняя - в качестве питательной среды для эритроцитов при хранении). Из антикоагулянтов чаще всего используют цитрат натрия, который связывает находящиеся в крови ионы кальция, необходимые для свертывания крови. Жидкую кровь хранят при 4° С до трех недель; за это время остается 70% первоначального количества жизнеспособных эритроцитов. Поскольку этот уровень живых эритроцитов считается минимально допустимым, кровь, хранившуюся больше трех недель, для переливания не используют. В связи с растущей потребностью в переливании крови появились методы, позволяющие сохранить жизнеспособность эритроцитов в течение более длительного времени. В присутствии глицерина и других веществ эритроциты могут храниться сколь угодно долго при температуре от -20 до -197° С. Для хранения при -197° С используют металлические контейнеры с жидким азотом, в которые погружают контейнеры с кровью. Кровь, бывшую в заморозке, успешно применяют для переливания. Заморозка позволяет не только создавать запасы обычной крови, но и собирать и хранить в специальных банках (хранилищах) крови редкие ее группы. Раньше кровь хранили в стеклянных контейнерах, но сейчас для этой цели используются в основном пластиковые емкости. Одно из главных преимуществ пластикового мешка состоит в том, что к одной емкости с антикоагулянтом можно прикрепить несколько мешочков, а затем с помощью дифференциального центрифугирования в "закрытой" системе выделить из крови все три типа клеток и плазму. Это очень важное новшество в корне изменило подход к переливанию крови. Сегодня уже говорят о компонентной терапии, когда под переливанием имеется в виду замена лишь тех элементов крови, в которых нуждается реципиент. Большинству людей, страдающих анемией, нужны только цельные эритроциты; больным лейкозом требуются в основном тромбоциты; больные гемофилией нуждаются лишь в определенных компонентах плазмы. Все эти фракции могут быть выделены из одной и той же донорской крови, после чего останутся только альбумин и гамма-глобулин (и тот, и другой имеют свои сферы применения). Цельная кровь применяется лишь для компенсации очень большой кровопотери, и сейчас ее используют для переливания менее чем в 25% случаев.
Плазма. При острой сосудистой недостаточности, вызванной массивной кровопотерей или же шоком вследствие тяжелого ожога либо травмы с разможжением тканей, требуется очень быстро восстановить объем крови до нормального уровня. Если цельная кровь недоступна, для спасения жизни больного могут быть использованы ее заменители. В качестве таких заменителей чаще всего применяется сухая человеческая плазма. Ее растворяют в водной среде и вводят больному внутривенно. Недостаток плазмы как кровезаменителя состоит в том, что с ней может передаваться вирус инфекционного гепатита. Для снижения риска заражения используются различные подходы. Например, вероятность заражения гепатитом уменьшается, хотя и не сводится к нулю, при хранении плазмы в течение нескольких месяцев при комнатной температуре. Возможна также тепловая стерилизация плазмы, сохраняющая все полезные свойства альбумина. В настоящее время рекомендуется использовать только стерилизованную плазму. В свое время при тяжелом нарушении водного баланса, обусловленном массивной кровопотерей или шоком, в качестве временных заменителей белков плазмы применялись синтетические кровезаменители, например полисахариды (декстраны). Однако применение таких веществ не дало удовлетворительных результатов. Физиологические (солевые) растворы при срочных переливаниях тоже оказались не столь эффективны, как плазма, раствор глюкозы и другие коллоидные растворы.
Банки крови. Во всех развитых странах создана сеть станций переливания крови, которые обеспечивают гражданскую медицину необходимым количеством крови для переливания. На станциях, как правило, только собирают донорскую кровь, а хранят ее в банках (хранилищах) крови. Последние предоставляют по требованию больниц и клиник кровь нужной группы. Кроме того, они обычно располагают специальной службой, которая занимается получением из просроченной цельной крови как плазмы, так и отдельных фракций (например, гамма-глобулина). При многих банках имеются также квалифицированные специалисты, проводящие полное типирование крови и изучающие возможные реакции несовместимости.
Уменьшение риска заражения. Особую опасность представляет заражение реципиента вирусом иммунодефицита человека (ВИЧ), вызывающим синдром приобретенного иммунодефицита (СПИД). Поэтому в настоящее время вся донорская кровь подвергается обязательной проверке (скринингу) на наличие в ней антител против ВИЧ. Однако антитела появляются в крови лишь спустя несколько месяцев после попадания ВИЧ в организм, поэтому скрининг не дает абсолютно надежных результатов. Сходная проблема возникает и при скрининге донорской крови на вирус гепатита В. Более того, долгое время не существовало серийных методов выявления гепатита С - они разработаны лишь в последние годы. Поэтому переливание крови всегда связано с определенным риском. Сегодня надо создавать условия для того, чтобы любой человек мог хранить в банке свою кровь, сдав ее, например, перед запланированной операцией; это позволит в случае кровопотери использовать для переливания его собственную кровь. Заражения можно не бояться и в тех случаях, когда вместо эритроцитов вводят их синтетические заменители (перфторуглероды), которые тоже служат переносчиками кислорода.
БОЛЕЗНИ КРОВИ
Болезни крови проще всего разделить на четыре категории - в зависимости от того, какие из основных компонентов крови при этом затрагиваются: эритроциты, тромбоциты, лейкоциты или плазма.
Аномалии эритроцитов. Болезни, связанные с аномалиями эритроцитов, сводятся к двум противоположным типам: анемии и полицитемии. Анемии - заболевания, при которых снижено либо количество эритроцитов в крови, либо содержание гемоглобина в эритроцитах. В основе анемии могут лежать следующие причины: 1) сниженная продукция эритроцитов или гемоглобина, не компенсирующая нормального процесса разрушения клеток (анемии, обусловленные нарушением эритропоэза); 2) ускоренное разрушение эритроцитов (гемолитическая анемия); 3) значительная потеря эритроцитов при сильных и продолжительных кровотечениях (постгеморрагическая анемия). Во многих случаях болезнь обусловлена комбинацией двух из этих причин (см. также АНЕМИЯ).
Полицитемия. В отличие от анемии при полицитемии количество эритроцитов в крови превышает норму. При истинной полицитемии, причины которой остаются неизвестными, наряду с эритроцитами увеличивается, как правило, содержание в крови лейкоцитов и тромбоцитов. Полицитемия может развиваться и в тех случаях, когда под действием факторов внешней среды или болезни снижается связывание кислорода кровью. Так, повышенный уровень эритроцитов в крови характерен для жителей высокогорья (например, для индейцев в Андах); то же наблюдается и у больных с хроническими нарушениями легочного кровообращения.
Аномалии тромбоцитов. Известны следующие аномалии тромбоцитов: падение их уровня в крови (тромбоцитопения), увеличение этого уровня (тромбоцитоз) или, что бывает редко, аномалии их формы и состава. Во всех названных случаях возможно нарушение функции тромбоцитов с развитием таких явлений, как склонность к кровоподтекам (подкожным кровоизлияниям) при ушибах; пурпура (спонтанные капиллярные кровотечения, часто подкожные); продолжительные, трудно останавливаемые кровотечения при травмах. Чаще всего встречается тромбоцитопения; ее причины - повреждение костного мозга и избыточная активность селезенки. Тромбоцитопения может развиваться как изолированное нарушение, так и в сочетании с анемией и лейкопенией. Когда не удается обнаружить явную причину болезни, говорят о т.н. идиопатической тромбоцитопении; чаще всего она встречается в детском и юношеском возрасте одновременно с гиперактивностью селезенки. В этих случаях удаление селезенки способствует нормализации уровня тромбоцитов. Есть и другие формы тромбоцитопении, которые развиваются либо при лейкозе или иной злокачественной инфильтрации костного мозга (т.е. заселении его раковыми клетками), либо при повреждении костного мозга под действием ионизирующей радиации и лекарственных препаратов.
Аномалии лейкоцитов. Как и в случае эритроцитов и тромбоцитов, лейкоцитарные аномалии связаны либо с возрастанием, либо с уменьшением количества лейкоцитов в крови.
Лейкопения. В зависимости от того, каких белых клеток крови становится меньше, различают два вида лейкопении: нейтропения, или агранулоцитоз (снижение уровня нейтрофилов), и лимфопения (снижение уровня лимфоцитов). Нейтропения возникает при некоторых инфекционных заболеваниях, сопровождающихся подъемом температуры (грипп, краснуха, корь, свинка, инфекционный мононуклеоз), и при кишечных инфекциях (например, при брюшном тифе). Нейтропению могут также вызывать лекарственные препараты и токсичные вещества. Поскольку нейтрофилы играют ключевую роль в защите организма от инфекции, нет ничего удивительного в том, что при нейтропении на коже и слизистых нередко появляются инфицированные язвы. При тяжелых формах нейтропении возможно заражение крови, грозящее смертельным исходом; часто отмечаются инфекции глотки и верхних дыхательных путей. Что касается лимфопении, то одна из ее причин - сильное рентгеновское облучение. Она также сопровождает некоторые заболевания, в частности болезнь Ходжкина (лимфогранулематоз), при которой нарушаются функции иммунной системы.
Лейкоз. Подобно клеткам других тканей организма, клетки крови могут перерождаться в раковые. Как правило, перерождению подвергаются лейкоциты, обычно какого-то одного типа. В результате развивается лейкоз, который может быть идентифицирован как моноцитарный лейкоз, лимфолейкоз или - в случае перерождения полиморфноядерных стволовых клеток - миелолейкоз. При лейкозе в крови в большом количестве обнаруживаются аномальные или незрелые клетки, которые иногда дают раковые инфильтраты в разных частях тела. Вследствие инфильтрации костного мозга раковыми клетками и замещения ими тех клеток, которые участвуют в эритропоэзе, лейкоз часто сопровождается анемией. Кроме того, анемия при лейкозе может возникать и потому, что быстро делящиеся клетки-предшественники лейкоцитов истощают запасы питательных веществ, необходимые для образования эритроцитов. Некоторые формы лейкоза поддаются лечению препаратами, подавляющими активность костного мозга (см. также ЛЕЙКОЗ).
Аномалии плазмы. Имеется группа болезней крови, которые характеризуются повышенной склонностью к кровотечениям (как спонтанным, так и в результате травм), связанной с недостаточностью в плазме определенных белков - факторов свертывания крови. Наиболее распространенная болезнь такого типа - гемофилия А (см. ГЕМОФИЛИЯ). Другой тип аномалии связан с нарушением синтеза иммуноглобулинов и соответственно с недостаточностью в организме антител. Это заболевание называется агаммаглобулинемией, причем известны как наследственные формы данной болезни, так и приобретенные. В основе ее лежит дефект лимфоцитов и плазматических клеток, в функцию которых входит продукция антител. Некоторые формы этой болезни приводят к смертельному исходу еще в детском возрасте, другие успешно лечат ежемесячными инъекциями гамма-глобулина.
КРОВЬ ЖИВОТНЫХ
У животных, кроме наиболее просто организованных, есть сердце, система кровеносных сосудов и некий специализированный орган, в котором может совершаться газообмен (легкие или жабры). Даже у самых примитивных многоклеточных организмов существуют подвижные клетки, т.н. амебоциты, которые переходят из одной ткани в другую. Эти клетки обладают некоторыми свойствами лимфоцитов. У животных, имеющих замкнутую кровеносную систему, кровь как по составу плазмы, так и по структуре и размерам клеточных элементов похожа на человеческую. У многих из них, в частности у большинства беспозвоночных, в крови нет клеток, подобных эритроцитам, а дыхательный пигмент (гемоглобин или гемоцианин) находится в плазме (гемолимфе). Как правило, эти животные отличаются малой активностью и низкой скоростью процессов обмена веществ. Возникновение клеток с гемоглобином, как это видно на примере эритроцитов человека, существенно увеличивает эффективность транспорта кислорода. Как правило, у рыб, земноводных и пресмыкающихся эритроциты ядерные, т.е. даже в зрелой форме они сохраняют ядро, хотя у некоторых видов встречаются в небольшом количестве и безъядерные красные клетки. Эритроциты низших позвоночных обычно крупнее, чем у млекопитающих. У птиц эритроциты имеют форму эллипса и содержат ядро. У всех перечисленных животных в крови есть также клетки, сходные с гранулоцитами и агранулоцитами человека. Для животных с меньшим кровяным давлением, чем у человека и высших млекопитающих, характерны и более простые механизмы гемостаза: в некоторых случаях остановка кровотечения достигается прямой закупоркой поврежденных сосудов крупными тромбоцитами. Млекопитающие почти не различаются по типу и размерам клеток крови. Исключение составляет верблюд, эритроциты которого не круглые, а в форме эллипса. Содержание эритроцитов в крови разных животных варьирует в широких пределах, а диаметр их колеблется от 1,5 мкм (азиатский оленек) до 7,4 мкм (лесной североамериканский сурок). Иногда в криминалистике возникает задача определить, оставлено ли данное пятно крови человеком или оно имеет животное происхождение. Хотя у разных видов животных также имеются групповые факторы крови (часто многочисленные), система групп крови не достигла у них такого уровня развития, как у человека. При исследовании пятен используют специфические для каждого вида антисыворотки против некоторых животных тканей, в том числе крови.
Толковый словарь Даля