Понятие о математическом моделировании. Виды моделирования. Математическое моделирование

Математическое моделирование - процесс построения и изучения математических моделей

основные тенденции в развитии математического (компьютерного) моделирования в последние годы связываются не столько с решением "микро" проблем, таких как представленное выше соотношение "модель-алгоритм-программа". Акценты моделирования все более смещаются к "макро-проблемам". Действительно, аппаратно-программные средства решения микро-проблем за последнее время практически перестали ограничивать возможности моделирования даже в самых крупных проектах. Во всем мире наряду с базовыми языками программирования для моделирования широко используются десятки специализированных языков и коммерчески доступных систем моделирования, а возможности сетевого общения открывают доступ к самым современным методологиям и идеям.

В современной теории управления создаются и применяются математические модели двух основных типов (хотя в различных разделах теории эти типы и определяются по-разному).
Для технологических объектов это деление соответствует "феноменологическим" и "дедуктивным" моделям. Под феноменологическими моделями понимаются преимущественно эмпирически восстанавливаемые входо-выходные зависимости, как правило, с небольшим числом входов и выходов. Дедуктивное моделирование предполагает выяснение и описание основных физических закономерностей функционирования всех узлов исследуемого процесса и механизмов их взаимодействия. Дедуктивные модели намного богаче, они описывают процесс в целом, а не отдельные его режимы.
Первый тип моделей - аналитические модели (или, точнее говоря, модели данных). "Модели данных - это модели, которые не требуют, не используют и не отображают каких-либо гипотез о физических процессах (системах), в которых эти данные получены". Второй тип моделей - системные модели (или модели систем). Это математические модели , которые "строятся в основном на базе физических законов и гипотез о том, как система структурирована и, возможно, о том, как она функционирует".
В классическом понимании к моделям данных (аналитическим моделям) относятся все модели математической статистики . В последнее время характерные макро-изменения наблюдаются и для этих моделей. Связь с "внешним миром" проникает в эту сферу моделирования как экспертно-статистические методы и системы, что существенно расширяет методологическую базу для принятия решений в задачах анализа данных и управления.
Вплоть до недавнего времени математические модели использовались в практике управления только как источник входных данных для систем управления. Моделирование технических систем на этапе проектирования для оптимизации их структуры и параметров продолжает эту традицию.
Во многих других задачах принципиально применимы только системные модели Во многих случаях модель может входить в систему управления в форме блока, вычисляющего выходы некоторого объекта по ее входам. Часто в этом случае речь идет о развитии так называемого имитационного моделирования - динамическом моделировании объекта . Динамическое моделирование характерно для различных задач реального времени, прежде всего, для компьютерных тренажеров. Так, в процессе тренажерного обучения действия оператора интерпретируются как входы модели системы (технологической, транспортной и т.п.), а выходы модели преобразуются в аудио-визуальный образ реакций системы на действия оператора. Такое моделирование осуществляется в реальном времени, что позволяет использовать его результаты в различных технологиях реального времени (от обнаружения неисправностей до интерактивного тренинга операторов).
Существует два основных класса задач, связанных с математическими моделями: прямые и обратные. В первом случае все параметры модели считаются известными, и нам остается только исследовать её поведение. Например, определение частоты колебаний гармонического осциллятора при известном значении параметра k -- прямая задача математического моделирования.


Порой требуется решить обратную задачу: какие-то параметры модели неизвестны (например, не могут быть измерены явно), и требуется их найти, сопоставляя поведение реальной системы с её моделью. Ещё одна обратная задача: подобрать параметры модели таким образом, чтобы она удовлетворяла каким-то заданным условиям - такие задачи требуется решать при проектировании систем.

математическая модель выражает существенные черты-объекта или процесса языком уравнений и других математических средств. Собственно говоря, сама математика обязана своим существованием тому, что она пытается отразить, т.е. промоделировать, на своем специфическом языке закономерности окружающего мира.

Путь математического моделирования в наше время гораздо более всеобъемлющ, нежели моделирования натурного. Огромный толчок развитию математического моделирования дало появление ЭВМ, хотя сам метод зародился одновременно с математикой тысячи лет назад.

Математическое моделирование как таковое отнюдь не всегда требует компьютерной поддержки. Каждый специалист, профессионально занимающийся математическим моделированием, делает все возможное для аналитического исследования модели. Аналитические решения (т.е. представленные формулами, выражающими результаты исследования через исходные данные) обычно удобнее и информативнее численных. Возможности аналитических методов решения сложных математических задач, однако, очень ограниченны и, как правило, эти методы гораздо сложнее численных.

Содержание Предмет математического моделирования. Основы моделирования. Понятие модели. Принцип моделирования. Моделирование как метод научного познания. Этапы моделирования. Характеристика 1 – 2 этапов. Этапы моделирования. Характеристика 3 – 4 этапов. Классификация моделей. Общий обзор. Классификация экономико-математических моделей. Этапы экономико-математического моделирования. Математическая модель. Линейное программирование. Постановка задачи линейного программирования. Геометрическая интерпретация и графическое решение задачи линейного программирования. Симплексный метод. Построение начального опорного плана. Симплексные таблицы. Признак оптимальности опорного плана. Понятие двойственности. Построение двойственных задач и их свойства. Транспортная задача. Построение исходного опорного плана. Транспортная задача. Метод потенциалов.

Содержание Основные понятия и определения теории графов. Упорядочение элементов орграфа. Алгоритм Фалкерсона. Решение задач о нахождении кратчайших путей в графе. Задача о максимальном потоке и ее приложения. Транспортная задача в сетевой постановке. Элементы сетевого планирования. Принципы динамического программирования, вычислительная процедура метода. Метод Монте-Карло. Суть метода. Решение задач методом Монте-Карло. Элементы теории матричных игр. Парные матричные игры с нулевой суммой. Методы решения матричных игр. Игры с природой. Критерии для принятия решения. Пакет Maple 7. Общий обзор пакета. Его возможности. Интерфейс программы, работа с командами. Использование переменных. Работа с таблицами.

Предмет математического моделирования. Основы моделирования Математическое моделирование - это исследование явлений, процессов, систем или объектов путем построения и изучения их моделей и использования последних для определения или уточнения характеристик и рациональных способов построения вновь конструируемых технологических процессов, систем и объектов. Математическая модель - это абстракция реального мира, в которой интересующие исследователя отношения между реальными элементами заменены подходящими отношениями между математическими категориями. Эти отношения, как правило, представлены в форме уравнений и (или) неравенств, характеризующих функционирование моделируемой реальной системы. Искусство построения математических моделей состоит в том, чтобы совместить как можно большую лаконичность в ее математическом описании с достаточной точностью модельного воспроизводства именно тех сторон анализируемой реальности, которые интересуют исследователя. Меню Моделирование - творческий процесс, требующий серьезной подготовки и переработки большого объема информации, сочетающий в себе трудоемкость и эвристические начала и носящий вероятностный характер.

Понятие модели. Моделирование как метод научного познания Модель - это некоторое упрощенное подобие реального объекта, явления или процесса. Модель - это такой материальный или мысленно представляемый объект, который замещает объект-оригинал с целью его исследования, сохраняя некоторые важные для данного исследования типичные черты и свойства оригинала. Хорошо построенная модель, как правило, доступнее для исследования, чем реальный объект (например, такой, как экономика страны, Солнечная система и т. п.). Другое, не менее важное назначение модели состоит в том, что с ее помощью выявляются наиболее существенные факторы, формирующие те или иные свойства объекта. Модель также позволяет учиться управлять объектом, что важно в тех случаях, когда экспериментировать с объектом бывает неудобно, трудно или невозможно (например, когда эксперимент имеет большую продолжительность или когда существует риск привести объект в нежелательное или необратимое состояние). Таким образом, можно сделать вывод, что модель необходима для того, чтобы: понять, как устроен конкретный объект - каковы его структура, основные свойства, законы развития и взаимодействия с окружающим миром; научиться управлять объектом или процессом и определить наилучшие способы управления при заданных целях и критериях (оптимизация); Меню прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект, процесс.

Этапы моделирования Характеристика 1 этапа I этап. Постановка задачи Под задачей в самом общем смысле понимается некая проблема, которую надо решить. Главное - определить объект моделирования и понять, что собой должен представлять результат. По характеру постановки все задачи можно разделить на две основные группы. К первой группе можно отнести задачи, в которых требуется исследовать, как изменяется характеристика объекта при некотором воздействии на него. Такую постановку задачи принято называть "что будет, если. . . ". Вторая группа задач имеет такую обобщенную формулировку: какое надо произвести воздействие на объект, чтобы его параметры удовлетворяли некоторому заданному условию? Такая постановка задачи часто называется "как сделать, чтобы. . . ". Цели моделирования определяются расчетными параметрами модели. Чаще всего это поиск ответа на вопрос, поставленный в формулировке задачи. Далее переходят к описанию объекта или процесса. На этой стадии выявляются факторы, от которых зависит поведение модели. При моделировании в электронных таблицах учитывать можно только те параметры, которые имеют количественные характеристики. Иногда задача может быть уже сформулирована в упрощенном виде, и в ней четко поставлены цели и определены параметры модели, которые надо учесть. При анализе объекта необходимо ответить на следующий вопрос: можно ли исследуемый объект или процесс рассматривать как единое целое или же это система, состоящая из более простых объектов? Если это единое целое, то можно перейти к построению информационной модели. Если система - надо перейти к анализу объектов, ее составляющих, определить связи между ними. Меню

Этапы моделирования Характеристика 2 этапа II этап. Разработка модели По результатам анализа объекта составляется информационная модель. В ней детально описываются все свойства объекта, их параметры, действия и взаимосвязи. Далее информационная модель должна быть выражена в одной из знаковых форм. Учитывая, что мы будем работать в среде электронных таблиц, то информационную модель необходимо преобразовать в математическую. На основе информационной и математической моделей составляется компьютерная модель в форме таблиц, в которой выделяются три области данных: исходные данные, промежуточные расчеты, результаты. Исходные данные вводятся "вручную". Расчеты, как промежуточные, так и окончательные, проводятся по формулам, записанным по правилам электронных таблиц. Меню

Этапы моделирования Характеристика 3 этапа III этап. Компьютерный эксперимент Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. В недалеком прошлом такой эксперимент можно было провести либо в лабораторных условиях на специально создаваемых для него установках, либо на натуре, т. е. на настоящем образце изделия, подвергая его всяческим испытаниям. Это требует больших материальных затрат и времени. В помощь пришли компьютерные исследования моделей. При проведении компьютерного эксперимента проверяют правильность построения моделей. Изучают поведение модели при различных параметрах объекта. Каждый эксперимент сопровождается осмыслением результатов. Если результаты компьютерного эксперимента противоречат смыслу решаемой задачи, то ошибку надо искать в неправильно выбранной модели или в алгоритме и методе ее решения. После выявления и устранения ошибок компьютерный эксперимент повторяется. Меню

Этапы моделирования Характеристика 4 этапа IV этап. Анализ результатов моделирования Заключительный этап моделирования - анализ модели. По полученным расчетным данным проверяется, насколько расчеты отвечают нашему представлению и целям моделирования. На этом этапе определяются рекомендации по совершенствованию принятой модели и, если возможно, объекта или процесса. Меню

Классификация моделей Классификация по области использования Учебные: наглядные пособия, различные тренажеры, обучающие программы. Опытные: уменьшенные или увеличенные копии исследуемого объекта для дальнейшего изучения (модели корабля, автомобиля, самолета, гидростанции). Научно-технические модели создают для исследования процессов и явлений (стенд для проверки телевизоров; синхротрон - ускоритель электронов и др.). Игровые: военные, экономические, спортивные, деловые игры. Имитационные: отражают реальность с той или иной степенью точности (испытание нового лекарственного средства в ряде опытах на мышах; эксперименты по внедрению в производство новой технологии). Классификация с учетом фактора времени Статическая модель - модель объекта в данный момент времени. Динамическая модель позволяет увидеть изменения объекта во времени. Меню

Классификация моделей Классификация по способу представления Материальная модель - это физическое подобие объекта. Они воспроизводят геометрические и физические свойства оригинала (чучела птиц, муляжи животных, внутренних органов человеческого организма, географические и исторические карты, схема солнечной системы). Информационная модель - это совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром. Любая информационная модель содержит лишь существенные сведения об объекте с учетом той цели, для которой она создается. Информационные модели одного и того же объекта, предназначенные для разных целей, могут быть совершенно разными. Вербальная модель - информационная модель в мысленной или разговорной форме. Знаковая модель - информационная модель, выраженная специальными знаками, т. е. средствами любого формального языка. Знаковые модели - это рисунки, тексты, графики, схемы, таблицы и т. д. Компьютерная модель - модель, реализованная средствами программной среды. Прежде чем построить модель объекта (явления, процесса), необходимо выделить составляющие его элементы и связи между ними (провести системный анализ) и "перевести" полученную структуру в какую-либо заранее определенную форму - формализовать информацию. Меню Формализация - это процесс выделения и перевода внутренней структуры предмета, явления или процесса в определенную информационную структуру - форму.

Классификация экономикоматематических моделей Экономико-математические модели – модели управляемых и регулируемых экономических процессов, использующиеся для преобразования экономической действительности. Адекватность моделей объектам моделирования определяется по совпадению результатов исследования с наблюдаемыми фактами. Практика в этом случае означает действительность. По целевому назначению экономико-математические модели бывают Теоретико-аналитические Прикладные Экономико-математические модели делятся на модели всего народного хозяйства и его подсистем (отраслей, регионов и т. д.) Модели бывают функциональные и структурные. Модели бывают дескрептивные и нормативные. Дескрептивные модели отвечают на вопрос, как это происходит и как может дальше развиваться? Нормативные модели отвечают на вопрос как это должно быть? То есть предполагают целенаправленную деятельность. Различают модели жёстко детерминистские и модели, учитывающие случайность и неопределённость. Модели бывают статически и динамические. По длительности рассматриваемого периода различают модели краткосрочного (1 -5 лет) и долгосрочного (10 -15 и более лет) прогнозирования, планирования. Само время в таких моделях может изменяться либо, непрерывно либо дискретно. Меню Модели могут быть линейные и нелинейные.

Этапы экономико-математического моделирования. Постановка экономической проблемы и её анализ. Главное – определить сущность проблемы, принимаемые допущения и те вопросы на которые, требуется получить ответы. Этап включает выделение важнейших черт и свойств объекта, абстрагирование от второстепенных. Формирование гипотез, если требуется, объясняющих поведение и развитие объекта. Построение математической модели. Этап формализации экономической проблемы. Неправильно полагать, что чем больше фактов учитывает модель, тем она лучше. Изменение сложности и громоздкости модели затрудняет процесс исследования. Нужно учитывать реальные возможности информационного и математического обеспечения. Нужно сопоставить затраты на моделирование с получаемым эффектом. Одной из важнейших особенностей математической модели является потенциальная возможность их использования для решения разных задач. Меню

Этапы экономико-математического моделирования. Математический анализ модели. Целью данного этапа является выяснение общих свойств модели. Важный момент – доказательство существования решения. Подготовка исходной информации Надо учитывать за какие сроки будет собрана нужная информация, учитывать затраты на подготовку информации. В процессе подготовки широко используются методы теории вероятности, теоретической и математической статистики. Численное решение. Разработка алгоритмов для численного решения задачи, составления программ для компьютера и непосредственно проведение расчетов. Трудность на этом этапе создаёт большая размерность экономических задач и необходимость обработки значительных массивов информации. Меню Анализ численных результатов и их применение. На этом этапе встаёт вопрос о правильности и полноте результатов моделирования, о степени их практической применимости.

Линейное программирование. Это раздел математического моделирования, все зависимости которого линейны. Математическая модель любой задачи линейного программирования имеет вид Z= max(min) Меню Условия не отрицательности Xj ≥ 0

Пример: При изготовлении изделий u 1 и u 2 используются токарные и фрезерные станки, а также сталь и цветные металлы, по технологическим нормам на производство единице изделия u 1 требуется 300 и 200 единиц соответственно токарного и фрезерного оборудования (в часах), и 10 и 20 единиц стали и цветных металлов (в кг.). для производства изделия u 2 требуется 400, 100, 70, 50 соответственно единиц тех же ресурсов. Цех располагает 12400 и 6800 часами, 640 и 840 кг. материала. Прибыль от реализации единице изделия u 1=6000 ден. ед. , u 2=16000 ден. ед. Требуется: Свести исходные данные в таблицу, удобную для построения модели. Составить математическую модель задачи. Определить план выпуска изделий, обеспечить max прибыль при условие что, время работы фрезерных станков должно быть использовано полностью.

Решение: Пусть х1 - число изделий u 1, а х2 – число изделий u 2, z – суммарная прибыль.

Линейное программирование. Эта общая или производная форма записи. Переменные Xj, которые удовлетворяют системе ограничений и условию не отрицательности, называются допустимыми. Допустимые переменные, которые превращают целевую функцию в max или min, называются оптимальными. Методы решения таких задач подразделяются на универсальные и специальные. Универсальным методом решают любые ЗЛП. Специальные методы учитывают особенности модели. Особенностью ЗЛП является то, что max (min) целевая функция достигает на границе области допустимых решений. К ЗЛП относятся: задача о выборе оптимальных технологий; задача о смесях; задача о раскрое материала; транспортная задача; Меню задача о наилучшем использовании ресурсов; задача о размещении заказа;

Постановка задачи линейного программирования Любая ЗЛП записывается с помощью математической модели. Существует 3 формы записи ЗЛП Меню Общая (произвольная)

Постановка задачи линейного программирования Все эти формы эквивалентны. Чтобы от max перейти к min (или наоборот) надо поменять знаки у каждого слагаемого в записи целевой функции. Чтобы превратить неравенство вида в неравенство вида (и наоборот) нужно обе части неравенства умножить на -1. Меню Каноническая (основная) Чтобы неравенство превратить в равенство (и наоборот) нужно добавить или отнять от левой части дополнительную неотрицательную переменную, она называется балансовой. При записи целевой функции она имеет коэффициент =0.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Основные понятия математического моделирования

Решение практических задач математическими методами последовательно осуществляется путем формулировки задачи (разработки математической модели), выбора метода исследования полученной математической модели, анализа полученного математического результата. Математическая формулировка задачи обычно представляется в виде геометрических образов, функций, систем уравнений и т.п. Описание объекта (явления) может быть представлено с помощью непрерывной или дискретной, детерминированной или стохастической и другими математическими формами.

Теория математического моделирования обеспечивает выявление закономерностей протекания различных явлений окружающего мира или работы систем и устройств путем их математического описания и моделирования без проведения натурных испытаний. При этом используются положения и законы математики, описывающие моделируемые явления, системы или устройства на некотором уровне их идеализации.

Математическая модель (ММ) представляет собой формализованное описание системы (или операции) на некотором абстрактном языке, например, в виде совокупности математических соотношений или схемы алгоритма, т. е. такое математическое описание, которое обеспечивает имитацию работы систем или устройств на уровне, достаточно близком к их реальному поведению, получаемому при натурных испытаниях систем или устройств. Любая ММ описывает реальный объект, явление или процесс с некоторой степенью приближения к действительности. Вид ММ зависит как от природы реального объекта, так и от задач исследования.

Математическое моделирование общественных, экономических, биологических и физических явлений, объектов, систем и различных устройств является одним из важнейших средств познания природы и проектирования самых разнообразных систем и устройств. Известны примеры эффективного использования моделирования в создании ядерных технологий, авиационных и аэрокосмических систем, в прогнозе атмосферных и океанических явлений, погоды и т.д.

Однако для таких серьезных сфер моделирования нередко нужны суперкомпьютеры и годы работы крупных коллективов ученых по подготовке данных для моделирования и его отладки. Тем не менее, и в этом случае математическое моделирование сложных систем и устройств не только экономит средства на проведение исследований и испытаний, но и может устранить экологические катастрофы - например, позволяет отказаться от испытаний ядерного и термоядерного оружия в пользу его математического моделирования или испытаний аэрокосмических систем перед их реальными полетами.

Между тем математическое моделирование на уровне решения более простых задач, например, из области механики, электротехники, электроники, радиотехники и многих других областей науки и техники в настоящее время стало доступным выполнять на современных ПК. А при использовании обобщенных моделей становится возможным моделирование и достаточно сложных систем, например, телекоммуникационных систем и сетей, радиолокационных или радионавигационных комплексов.

Целью математического моделирования является анализ реальных процессов (в природе или технике) математическими методами. В свою очередь, это требует формализации ММ процесса, подлежащего исследованию. Модель может представлять собой математическое выражение, содержащее переменные, поведение которых аналогично поведению реальной системы. Модель может включать элементы случайности, учитывающие вероятности возможных действий двух или большего числа «игроков», как, например, в теории игр; либо она может представлять реальные переменные параметры взаимосвязанных частей действующей системы.

Математическое моделирование для исследования характеристик систем можно разделить на аналитическое, имитационное и комбинированное. В свою очередь, ММ делятся на имитационные и аналитические.

2. Особенности построения математических моделей

Для использования ЭВМ при решении прикладных задач прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена егоматематическая модель.

Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи.

Для построения математической модели необходимо:

Тщательно проанализировать реальный объект или процесс;

Выделить его наиболее существенные черты и свойства;

Определить переменные, т.е. параметры, значения которых влияют на основные черты и свойства объекта;

Описать зависимость основных свойств объекта, процесса или системы от значения переменных с помощью логико-математических соотношений (уравнения, равенства, неравенства, логико-математические конструкций);

Выделить внутренние связи объекта, процесса или системы с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций;

Определить внешние связи и описать их с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций.

Математическое моделирование, кроме исследования объекта, процесса или системы и составления их математического описания, также включает:

Построение алгоритма, моделирующего поведение объекта, процесса или системы;

Проверка адекватности модели и объекта, процесса или системы на основе вычислительного и натурного эксперимента;

Корректировка модели;

Использование модели.

Математическое описание исследуемых процессов и систем зависит от:

Природы реального процесса или системы и составляется на основе законов физики, химии, механики, термодинамики, гидродинамики, электротехники, теории пластичности, теории упругости и т.д.

Требуемой достоверности и точности изучения и исследования реальных процессов и систем.

На этапе выбора математической модели устанавливаются: линейность и нелинейность объекта, процесса или системы, динамичность или статичность, стационарность или нестационарность, а также степень детерминированности исследуемого объекта или процесса. При математическом моделировании сознательно отвлекаются от конкретной физической природы объектов, процессов или систем и, в основном, сосредотачиваются на изучении количественных зависимостей между величинами, описывающими эти процессы.

Математическая модель никогда не бывает полностью тождественна рассматриваемому объекту, процессу или системе. Основанная на упрощении, идеализации, она является приближенным описанием объекта. Поэтому результаты, полученные при анализе модели, носят приближенный характер. Их точность определяется степенью адекватности (соответствия) модели и объекта.

Построение математической модели обычно начинается с построения и анализа простейшей, наиболее грубой математической модели рассматриваемого объекта, процесса или системы. В дальнейшем, в случае необходимости, модель уточняется, делается ее соответствие объекту более полным.Возьмем простой пример. Нужно определить площадь поверхности письменного стола. Обычно для этого измеряют его длину и ширину, а затем перемножают полученные числа. Такая элементарная процедура фактически обозначает следующее: реальныйобъект (поверхность стола) заменяется абстрактной математической моделью - прямоугольником. Прямоугольнику приписываются размеры, полученные в результате измерения длины и ширины поверхности стола, и площадь такого прямоугольника приближенно принимается за искомую площадь стола.

Однако модель прямоугольника для письменного стола - это простейшая, наиболее грубая модель. При более серьезном подходе к задаче прежде, чем воспользоваться для определения площади стола моделью прямоугольника, эту модель нужно проверить. Проверки можно осуществить следующим образом: измерить длины противоположных сторон стола, а также длины его диагоналей и сравнить их между собой. Если, с требуемой степенью точности, длины противоположных сторон и длины диагоналей попарно равны между собой, то поверхность стола действительно можно рассматривать как прямоугольник. В противном случае модель прямоугольника придется отвергнуть и заменить моделью четырехугольника общего вида. При более высоком требовании к точности может возникнуть необходимость пойти в уточнении модели еще дальше, например, учесть закругления углов стола.

С помощью этого простого примера было показано, что математическая модель не определяется однозначно исследуемым объектом, процессом или системой. Для одного и того же стола мы можем принять либо модель прямоугольника, либо более сложную модель четырехугольника общего вида, либо четырехугольника с закругленными углами. Выбор той или иной модели определяется требованием точности. С повышением точности модель приходится усложнять, учитывая новые и новые особенности изучаемого объекта, процесса или системы.

Рассмотрим другой пример: исследование движения кривошипно-шатунного механизма (Рис. 4).

Для кинематического анализа этого механизма, прежде всего, необходимо построить его кинематическую модель. Для этого:заменяем механизм его кинематической схемой, где все звенья заменены жесткими связями.Пользуясь этой схемой, мы выводим уравнение движения механизма.Дифференцируя последнее, получаем уравнения скоростей и ускорения, которые представляют собой дифференциальные уравнения 1-го и 2-го порядка.

Запишем эти уравнения:

где С 0 - крайнее правое положение ползуна С:

r - радиус кривошипа AB;

l - длина шатуна BC;

Угол поворота кривошипа;

Полученные трансцендентные уравнения представляют математическую модель движения плоского аксиального кривошипно-шатунного механизма, основанную на следующих упрощающих предположениях:нас не интересовали конструктивные формы и расположение масс, входящих в механизм тел, и все тела механизма мы заменили отрезками прямых. На самом деле, все звенья механизма имеют массу и довольно сложную форму. Например, шатун - это сложное сборное соединение, форма и размеры которого, конечно, будут влиять на движение механизма;при построении математической модели движения рассматриваемого механизма мы также не учитывали упругость входящих в механизм тел, т.е. все звенья рассматривали как абстрактные абсолютно жесткие тела. В действительности же, все входящие в механизм тела - упругие тела. Они при движении механизма будут как-то деформироваться, в них могут даже возникнуть упругие колебания. Это все, конечно, также будет влиять на движение механизма;мы не учитывали погрешность изготовления звеньев, зазоры в кинематических парах A, B, C и т.д.

Таким образом, важно еще раз подчеркнуть, что, чем выше требования к точности результатов решения задачи, тем больше необходимость учитывать при построении математической модели особенности изучаемого объекта, процесса или системы. Однако, здесь важно во время остановиться, так как сложная математическая модель может превратиться в трудно разрешимуюзадачу.

Наиболее просто строится модель, когда хорошо известны законы, определяющие поведение и свойства объекта, процесса или системы, и имеется большой практический опыт их применения.Более сложная ситуация возникает тогда, когда наши знания об изучаемом объекте, процессе или системе недостаточны. В этом случае при построении математической модели приходится делать дополнительные предположения, которые носят характер гипотез, такая модель называется гипотетической. Выводы, полученные в результате исследования такой гипотетической модели, носят условный характер. Для проверки выводов необходимо сопоставить результаты исследования модели на ЭВМ с результатами натурного эксперимента. Таким образом, вопрос применимости некоторой математической модели к изучению рассматриваемого объекта, процесса или системы не является математическим вопросом и не может быть решен математическими методами.

Основным критерием истинности является эксперимент, практика в самом широком смысле этого слова.

Построение математической модели в прикладных задачах - один из наиболее сложных и ответственных этапов работы. Опыт показывает, что во многих случаях правильно выбрать модель - значит решить проблему более, чем наполовину. Трудность данного этапа состоит в том, что он требует соединения математических и специальных знаний. Поэтому очень важно, чтобы при решении прикладных задач математики обладали специальными знаниями об объекте, а их партнеры, специалисты, - определенной математической культурой, опытом исследования в своей области, знанием ЭВМ и программирования.

3. Обобщенная математическая модель

Математическая модель описывает зависимость между исходными данными и искомыми величинами.Элементами обобщенной математической модели являются (рис. 1):

· множество входных данных (переменные) X,Y; X - совокупность варьируемых переменных; Y - независимые переменные (константы);

· математический оператор L, определяющий операции над этими данными; под которым понимается полная система математических операций, описывающих численные или логические соотношения между множествами входных и выходных данных (переменные);

· множество выходных данных (переменных) G(X,Y); представляет собой совокупность критериальных функций, включающую (при необходимости) целевую функцию.

Математическая модель является математическим аналогом проектируемого объекта. Степень адекватности ее объекту определяется постановкой и корректностью решений задачи проектирования.

Множество варьируемых параметров (переменных) X образует пространство варьируемых параметров R x (пространство поиска), которое является метрическим с размерностью n, равной числу варьируемых параметров.

Множество независимых переменных Y образуют метрическое пространство входных данных R y . В том случае, когда каждый компонент пространства R y задается диапазоном возможных значений, множество независимых переменных отображается некоторым ограниченным подпространством пространства R y .

Множество независимых переменных Y определяет среду функционирования объекта, т.е. внешние условия, в которых будет работать проектируемый объект.Это могут быть:

Технические параметры объекта, не подлежащие изменению в процессе проектирования;

Физические возмущения среды, с которой взаимодействует объект проектирования;

Тактические параметры, которые должен достигать объект проектирования.

Выходные данные рассматриваемой обобщенной модели образуют метрическое пространство критериальных показателей R G .

Схема использования математической модели в системе автоматизированного проектирования показана на рис.2.

4. Требования к математическим моделям

математический модель задача результат

Основными требованиями к МО являются требования адекватности, точности, экономичности.

1. Адекватность - способность отображать заданные свойства объекта с погрешностью не выше заданной.

2. Точность - оценивается степенью совпадения значений параметров действительного объекта и рассчитанных на математических моделях.

3. Универсальность - характеризует полноту отображения в модели свойств реального объекта.

4. Экономичность - обычно характеризуется необходимыми затратами машинной памяти и времени. Иногда оценивается по количеству операций необходимых при одном обращении к модели.Аналогичные требования по точности и экономичности фигурируют при выборе численных методов решения уравнений модели.

Требования универсальности, точности, адекватности с одной стороны и экономичности с другой противоречивы. Это обуславливает работу целого спектра моделей отличающихся теми или иными свойствами.

5. Методы получения математической модели

1. Выбор свойств объекта, которые подлежат отражению в модели. Выбор основан на анализе возможных применений модели и определяет степень универсальности ММ.

2. Сбор исходной информации о выбранных свойствах объекта. Источниками сведений могут быть: опыт и знания инженера, разрабатывающего модель; научно-техническая литература, прежде всего справочная; описания прототипов -- имеющихся ММ для элементов, близких по своим свойствам к исследуемому объекту; результаты экспериментального измерения параметров и т. п.

3. Синтез структуры ММ. Структура ММ -- общий вид математических соотношений модели без конкретизации числовых значений фигурирующих в них параметров. Структура модели может быть представлена также в графической форме, например в виде эквивалентной схемы или графа. Синтез структуры -- наиболее ответственная и наиболее трудно поддающаяся формализации операция.

4. Расчет числовых значений параметров ММ. Эта задача ставится как задача минимизации погрешности модели заданной структуры.

5. Оценка точности и адекватности ММ. Для оценки точности должны использоваться значения, которые не фигурировали при решении задачи.

6. Реализация функциональных ММ на ЭВМ подразумевает выбор численного метода решения уравнений и преобразование уравнений в соответствии с особенностями выбранного метода. Конечная цель преобразований -- получение рабочей программы анализа в виде последовательности элементарных действий (арифметических и логических операций), реализуемых командами ЭВМ. Указанные преобразования исходной ММ в последовательности элементарных действий ЭВМ выполняет автоматически по специальным программам, создаваемым инженером -- разработчиком САПР. Инженер-пользователь САПР должен лишь указать, какие программы из имеющихся он хочет использовать. Процесс преобразований ММ, относящихся к различным иерархическим уровням, иллюстрирует рисунок 3.

Рисунок 3 Процесс преобразования математических моделей ДУЧП -- дифференциальные уравнения с частными производными; ОДУ -- обыкновенные дифференциальные уравнения; АУ -- алгебраические уравнения; ЛАУ -- линейные алгебраические уравнения; 1...12 -- взаимно направленные пути дискретизации переменных в ММ

7. Инженер-пользователь задает исходную информацию об анализируемом объекте и о проектных процедурах, подлежащих выполнению, на удобном для него проблемно-ориентированном языке программного комплекса. Ветви 1 на рисунке 5.1 соответствует постановка задачи, относящейся к микроуровню, как краевой, чаще всего в виде ДУЧП. Численные методы решения ДУЧП основаны на дискретизации переменных и алгебраизации задачи.

Дискретизация заключается в замене непрерывных переменных конечным множеством их значений в заданных для исследования пространственном и временном интервалах; алгебраизация -- в замене производных алгебраическими соотношениями.

6. Использование математических моделей

Вычислительная мощность современных компьютеров в сочетании с предоставлением пользователю всех ресурсов системы, возможностью диалогового режима при решении задачи и анализе результатов позволяют свести к минимуму время решения задачи.

При составлении математической модели от исследователя требуется:

· изучить свойства исследуемого объекта;

· умение отделить главные свойства объекта от второстепенных;

· оценить принятые допущения.

Модель описывает зависимость между исходными данными и искомыми величинами. Последовательность действий, которые надо выполнить, чтобы от исходных данных перейти к искомым величинам, называют алгоритмом.

Алгоритм решения задачи связан с выбором численного метода. В зависимости от формы представления математической модели (алгебраическая или дифференциальная форма) используются различные численные методы.

Размещено на Allbest.ru

Подобные документы

    Основные понятия математического моделирования, характеристика этапов создания моделей задач планирования производства и транспортных задач; аналитический и программный подходы к их решению. Симплекс-метод решения задач линейного программирования.

    курсовая работа , добавлен 11.12.2011

    Применение системы MathCAD при решении прикладных задач технического характера. Основные средства математического моделирования. Решение дифференциальных уравнений. Использование системы MathCad для реализации математических моделей электрических схем.

    курсовая работа , добавлен 17.11.2016

    Сущность понятия "дифференциальное уравнение". Главные этапы математического моделирования. Задачи, приводящие к решению дифференциальных уравнений. Решение задач поиска. Точность маятниковых часов. Решение задачи на определение закона движения шара.

    курсовая работа , добавлен 06.12.2013

    Изучение актуальной задачи математического моделирования в биологии. Исследование модифицированной модели Лотки-Вольтерра типа конкуренция хищника за жертву. Проведение линеаризации исходной системы. Решение системы нелинейных дифференциальных уравнений.

    контрольная работа , добавлен 20.04.2016

    Основные положения теории математического моделирования. Структура математической модели. Линейные и нелинейные деформационные процессы в твердых телах. Методика исследования математической модели сваи сложной конфигурации методом конечных элементов.

    курсовая работа , добавлен 21.01.2014

    Понятие и виды задач математического линейного и нелинейного программирования. Динамическое программирование, решение задачи средствами табличного процессора Excel. Задачи динамического программирования о выборе оптимального распределения инвестиций.

    курсовая работа , добавлен 21.05.2010

    Общая характеристика факультативных занятий по математике, основные формы и методы проведения. Составление календарно-тематического плана факультативного курса

Математические модели

Математическая модель - приближенное опи сание объекта моделирования, выраженное с помо щью математической символики.

Математические модели появились вместе с математикой много веков назад. Огромный толчок развитию математического моделирования придало появление ЭВМ. Применение вычислительных машин позволило проанализировать и применить на практике многие математические модели, которые раньше не поддавались аналитическому исследованию. Реализованная на компьютере математиче ская модель называется компьютерной математической моделью , а проведение целенаправленных расчетов с помощью компьютерной модели называется вычислительным экспериментом .

Этапы компьютерного математического мо делирования изображены на рисунке. Первый этап - определение целей моделирования. Эти цели могут быть различными:

  1. модель нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия
    с окружающим миром (понимание);
  2. модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях (управление);
  3. модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).
Поясним на примерах. Пусть объект исследования - взаимодействие потока жидкости или газа с телом, являющимся для этого потока препятствием. Опыт показывает, что сила сопротивления потоку со стороны тела растет с ростом скорости потока, но при некоторой достаточно высокой скорости эта сила скачком уменьшается с тем, чтобы с дальнейшим увеличением скорости снова возрасти. Что же вызвало уменьшение силы сопротивления? Математическое моделирование позволяет получить четкий ответ: в момент скачкообразного уменьшения сопротивления вихри, образующиеся в потоке жидкости или газа позади обтекаемого тела, начинают отрываться от него и уноситься потоком.

Пример совсем из другой области: мирно сосуществовавшие со стабильными численностями популяции двух видов особей, имеющих общую кормовую базу, "вдруг" начинают резко менять численность. И здесь математическое моделирование позволяет (с известной долей достоверности) установить причину (или по крайней мере опровергнуть определенную гипотезу).

Выработка концепции управления объектом - другая возможная цель моделирования. Какой режим полета самолета выбрать для того, чтобы полет был безопасным и экономически наиболее выгодным? Как составить график выполнения сотен видов работ на строительстве большого объекта, чтобы оно закончилось в максимально короткий срок? Множество таких проблем систематически возникает перед экономистами, конструкторами, учеными.

Наконец, прогнозирование последствий тех или иных воздействий на объект может быть как относительно простым делом в несложных физических системах, так и чрезвычайно сложным - на грани выполнимости - в системах биолого-экономических, социальных. Если ответить на вопрос об изменении режима распространения тепла в тонком стержне при изменениях в составляющем его сплаве относительно легко, то проследить (предсказать) экологические и климатические последствия строительства крупной ГЭС или социальные последствия изменений налогового законодательства несравненно труднее. Возможно, и здесь методы математического моделирования будут оказывать в будущем более значительную помощь.

Второй этап: определение входных и выходных параметров модели; разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием, или разделением по рангам (см. "Формализа ция и моделирование" ).

Третий этап: построение математической модели. На этом этапе происходит переход от абстрактной формулировки модели к формулировке, имеющей конкретное математическое представление. Математическая модель - это уравнения, системы уравнений, системы неравенств, дифференциальные уравнения или системы таких уравнений и пр.

Четвертый этап: выбор метода исследования математической модели. Чаще всего здесь используются численные методы, которые хорошо поддаются программированию. Как правило, для решения одной и той же задачи подходит несколько методов, различающихся точностью, устойчивостью и т.д. От верного выбора метода часто зависит успех всего процесса моделирования.

Пятый этап: разработка алгоритма, составление и отладка программы для ЭВМ - трудно формализуемый процесс. Из языков программирования многие профессионалы для математического моделирования предпочитают FORTRAN: как в силу традиций, так и в силу непревзойденной эффективности компиляторов (для расчетных работ) и наличия написанных на нем огромных, тщательно отлаженных и оптимизированных библиотек стандартных программ математических методов. В ходу и такие языки, как PASCAL, BASIC, С, - в зависимости от характера задачи и склонностей программиста.

Шестой этап: тестирование программы. Работа программы проверяется на тестовой задаче с заранее известным ответом. Это - лишь начало процедуры тестирования, которую трудно описать формально исчерпывающим образом. Обычно тестирование заканчивается тогда, когда пользователь по своим профессиональным признакам сочтет программу верной.

Седьмой этап: собственно вычислительный эксперимент, в процессе которого выясняется, соответствует ли модель реальному объекту (процессу). Модель достаточно адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментально полученными характеристиками с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаемся к одному из предыдущих этапов.

Классификация математических моделей

В основу классификации математических моделей можно положить различные принципы. Можно классифицировать модели по отраслям наук (математические модели в физике, биологии, социологии и т.д.). Можно классифицировать по применяемому математическому аппарату (модели, основанные на применении обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д.). Наконец, если исходить из общих задач моделирования в разных науках безотносительно к математическому аппарату, наиболее естественна такая классификация:

  • дескриптивные (описательные) модели;
  • оптимизационные модели;
  • многокритериальные модели;
  • игровые модели.

Поясним это на примерах.

Дескриптивные (описательные) модели . Например, моделирование движения кометы, вторгшейся в Солнечную систему, производится с целью предсказания траектории ее полета, расстояния, на котором она пройдет от Земли, и т.д. В этом случае цели моделирования носят описательный характер, поскольку нет никаких возможностей повлиять на движение кометы, что-то в нем изменить.

Оптимизационные модели используются для описания процессов, на которые можно воздействовать, пытаясь добиться достижения заданной цели. В этом случае в модель входит один или несколько параметров, доступных влиянию. Например, меняя тепловой режим в зернохранилище, можно задаться целью подобрать такой режим, чтобы достичь максимальной сохранности зерна, т.е. оптимизировать процесс хранения.

Многокритериальные модели . Нередко приходится оптимизировать процесс по нескольким параметрам одновременно, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, нужно организовать питание больших групп людей (в армии, детском летнем лагере и др.) физиологически правильно и, одновременно с этим, как можно дешевле. Ясно, что эти цели совсем не совпадают, т.е. при моделировании будет использоваться несколько критериев, между которыми нужно искать баланс.

Игровые модели могут иметь отношение не только к компьютерным играм, но и к весьма серьезным вещам. Например, полководец перед сражением при наличии неполной информации о противостоящей армии должен разработать план: в каком порядке вводить в бой те или иные части и т.д., учитывая и возможную реакцию противника. Есть специальный раздел современной математики - теория игр, - изучающий методы принятия решений в условиях неполной информации.

В школьном курсе информатики начальное представление о компьютерном математическом моделировании ученики получают в рамках базового курса. В старших классах математическое моделирование может глубоко изучаться в общеобразовательном курсе для классов физико-математического профиля, а также в рамках специализированного элективного курса.

Основными формами обучения компьютерному математическому моделированию в старших классах являются лекционные, лабораторные и зачетные занятия. Обычно работа по созданию и подготовке к изучению каждой новой модели занимает 3-4 урока. В ходе изложения материала ставятся задачи, которые в дальнейшем должны быть решены учащимися самостоятельно, в общих чертах намечаются пути их решения. Формулируются вопросы, ответы на которые должны быть получены при выполнении заданий. Указывается дополнительная литература, позволяющая получить вспомогательные сведения для более успешного выполнения заданий.

Формой организации занятий при изучении нового материала обычно служит лекция. После завершения обсуждения очередной модели учащиеся имеют в своем распоряжении необходимые теоретические сведения и набор заданий для дальнейшей работы. В ходе подготовки к выполнению задания учащиеся выбирают подходящий метод решения, с помощью какого-либо известного частного решения тестируют разработанную программу. В случае вполне возможных затруднений при выполнении заданий дается консультация, делается предложение более детально проработать указанные разделы в литературных источниках.

Наиболее соответствующим практической части обучения компьютерному моделированию является метод проектов. Задание формулируется для ученика в виде учебного проекта и выполняется в течение нескольких уроков, причем основной организационной формой при этом являются компьютерные лабораторные работы. Обучение моделированию с помощью метода учебных проектов может быть реализовано на разных уровнях. Первый - проблемное изложение процесса выполнения проекта, которое ведет учитель. Второй - выполнение проекта учащимися под руководством учителя. Третий - самостоятельное выполнение учащимися учебного исследовательского проекта.

Результаты работы должны быть представлены в численном виде, в виде графиков, диаграмм. Если имеется возможность, процесс представляется на экране ЭВМ в динамике. По окончанию расчетов и получению результатов проводится их анализ, сравнение с известными фактами из теории, подтверждается достоверность и проводится содержательная интерпретация, что в дальнейшем отражается в письменном отчете.

Если результаты удовлетворяют ученика и учителя, то работа считается завершенной, и ее конечным этапом является составление отчета. Отчет включает в себя краткие теоретические сведения по изучаемой теме, математическую постановку задачи, алгоритм решения и его обоснование, программу для ЭВМ, результаты работы программы, анализ результатов и выводы, список использованной литературы.

Когда все отчеты составлены, на зачетном занятии учащиеся выступают с краткими сообщениями о проделанной работе, защищают свой проект. Это является эффективной формой отчета группы, выполняющей проект, перед классом, включая постановку задачи, построение формальной модели, выбор методов работы с моделью, реализацию модели на компьютере, работу с готовой моделью, интерпретацию полученных результатов, прогнозирование. В итоге учащиеся могут получить две оценки: первую - за проработанность проекта и успешность его защиты, вторую - за программу, оптимальность ее алгоритма, интерфейс и т.д. Учащиеся получают отметки и в ходе опросов по теории.

Существенный вопрос - каким инструментарием пользоваться в школьном курсе информатики для математического моделирования? Компьютерная реализация моделей может быть осуществлена:

  • с помощью табличного процессора (как правило, MS Excel);
  • путем создания программ на традиционных языках программирования (Паскаль, Бейсик и др.), а также на их современных версиях (Delphi, Visual
    Basic for Application и т.п.);
  • с помощью специальных пакетов прикладных программ для решения математических задач (MathCAD и т.п.).

На уровне основной школы первое средство представляется более предпочтительным. Однако в старшей школе, когда программирование является, наряду с моделированием, ключевой темой информатики, желательно привлекать его в качестве инструмента моделирования. В процессе программирования учащимся становятся доступными детали математических процедур; более того, они просто вынуждены их осваивать, а это способствует и математическому образованию. Что же касается использования специальных пакетов программ, то это уместно в профильном курсе информатики в качестве дополнения к другим инструментам.

Задание :

  • Составить схему ключевых понятий.