Что значит инерциальная система отсчета. Неинерциальная система отсчета: определение, примеры

На всякое тело могут оказывать воздействия другие тела, его окружающие, в результате чего может измениться состояние движения (покоя) наблюдаемого тела. Вместе с тем такие воздействия могут быть скомпенсированы (уравновешены) и не вызывать таковых изменений. Когда говорят, что действия двух или нескольких тел компенсируют друг друга, то это значит, что результат их совместного действия такой же, как если бы этих тел вовсе не было. Если влияние на тело других тел компенсируется, то относительно Земли тело находится или в покое, или движется прямолинейно и равномерно.

Таким образом, мы приходим к одному из основных законов механики, который называется первым законом Ньютона.

1-й закон Ньютона (закон инерции)

Существуют такие системы отсчёта, в которых поступательно движущееся тело находится в состоянии покоя или равномерного прямолинейного движения (движения по инерции) до тех пор, пока воздействия со стороны других тел не выведут его из этого состояния.

Применительно к сказанному, изменение скорости тела (т.е. ускорение) всегда вызывается воздействием на это тело каких-либо других тел.

1-й закон Ньютона выполняется только в инерциальных система отсчёта.

Определение

Системы отсчёта, относительно которых тело, не испытывающее на себе воздействия других тел, покоится или движется равномерно и прямолинейно, называются инерциальными.

Установить, является ли данная система отсчёта инерциальной, можно лишь опытным путём. В большинстве случаев можно считать инерциальными системы отсчёта, связанные с Землёй или с телами отсчёта, которые по отношению к земной поверхности движутся равномерно и прямолинейно.

Рисунок 1. Инерциальные системы отсчёта

В настоящее время экспериментально подтверждено, что практически инерциальна гелиоцентрическая система отсчета, связанная с центром Солнца и тремя "неподвижными" звездами.

Любая другая система отсчета, движущаяся относительно инерциальной равномерно и прямолинейно, сама является инерциальной.

Галилей установил, что никакими механическими опытами, поставленными внутри инерциальной системы отсчета, невозможно установить, покоится эта система или движется равномерно и прямолинейно. Это утверждение носит название принципа относительности Галилея, или механического принципа относительности.

Этот принцип был впоследствии развит А. Эйнштейном и является одним из постулатов специальной теории относительности. ИСО играют в физике исключительно важную роль, так как, согласно принципу относительности Эйнштейна, математическое выражение любого закона физики имеет одинаковый вид в каждой ИСО.

Если тело отсчёта движется с ускорением, то связанная с ним система отсчёта является неинерциальной, и в ней 1-й закон Ньютона несправедлив.

Свойство тел сохранять во времени своё состояние (скорость движения, направление движения, состояние покоя и т.п.) называют инертностью. Само явление сохранения скорости движущимся телом при отсутствии внешних воздействий называется инерцией.

Рисунок 2. Проявления инерции в автобусе при начале движения и торможении

С проявлением инертности тел мы часто встречаемся в повседневности. При резком ускорении автобуса пассажиры, находящиеся в нём, наклоняются назад (рис.2,а), а при резком торможении автобуса наклоняются вперёд (рис.2,б), а при повороте автобуса вправо - к левой его стенке. При большом ускорении взлетающего самолёта тело пилота, стремясь сохранить первоначальное состояние покоя, прижимается к сидению.

Инертность тел наглядно проявляется при резкой смене ускорений тел системы, когда инерциальная система отсчёта сменяется неинерциальной, и наоборот.

Инертность тела принято характеризовать его массой (инертной массой).

Сила, действующая на тело со стороны неинерциальной системы отсчета, называется силой инерции

Если на тело в неинерциальной системе отсчета одновременно действуют несколько сил, одни из которых являются "обычными" силами, а другие - инерциальными, то тело будет испытывать одну результирующую силу, являющуюся векторной суммой всех действующих на него сил. Эта результирующая сила не является силой инерции. Сила инерции - это только составляющая результирующей силы.

Если палочку, подвешенную на двух тонких нитях, медленно потянуть за шнур, прикрепленный к ее центру, то:

  1. палочка сломается;
  2. оборвется шнур;
  3. оборвется одна из нитей;
  4. возможен любой вариант, в зависимости от приложенной силы

Рисунок 4

Сила приложена к середине палочки, в месте подвеса шнура. Поскольку, по 1 закону Ньютона, всякое тело обладает инертностью, часть палочки в точке подвеса шнура будет двигаться под действием приложенной силы, а другие части палочки, на которые сила не действует, останутся в покое. Потому сломается палочка в точке подвеса.

Ответ. Правильный ответ 1.

Человек везет двое связанных саней, прикладывая силу под углом 300 к горизонту. Найдите эту силу, если известно, что сани движутся равномерно. Массы саней по 40 кг. Коэффициент трения 0,3.

$т_1$ = $т_2$ = $m$ = 40 кг

${\mathbf \mu }$ = 0,3

${\mathbf \alpha }$=$30^{\circ}$

$g$ = 9.8 м/с2

Рисунок 5

Так как сани движутся с постоянной скоростью, то по первому закону Ньютона сумма сил, действующих на сани, равна нулю. Запишем первый закон Ньютона для каждого тела сразу в проекции на оси, и добавим закон сухого трения Кулона для саней:

Ось ОХ Ось OY

\[\left\{ \begin{array}{c} T-F_{тр1}=0 \\ F_{тр1}=\mu N_1 \\ F_{тр2}=\mu N_2 \\ F{cos \alpha -\ }F_{тр2}-T=0 \end{array} \right. \left\{ \begin{array}{c} N_1-mg=0 \\ N_2+F{sin \alpha \ }-mg=0 \end{array} \right.\]

$F=\frac{2\mu mg}{{cos \alpha \ }+\mu {sin \alpha \ }}=\ \frac{2\cdot 0.3\cdot 40\cdot 9.8}{{cos 30{}^\circ \ }+0.3\cdot {sin 30{}^\circ \ }}=231.5\ H$

Представляем вашему вниманию видеоурок, посвященный теме «Инерциальные системы отсчета. Первый закон Ньютона», которая входит в школьный курс физики за 9 класс. В начале занятия преподаватель напомнит о важности выбранной системы отсчета. А затем расскажет о правильности и особенностях выбранной системы отсчета, а также объяснит термин «инерция».

На предыдущем уроке мы говорили о важности выбора системы отсчета. Напомним, что от того, как мы выберем СО, будут зависеть траектория, пройденный путь, скорость. Есть еще ряд особенностей, связанных с выбором системы отсчета, именно о них и поговорим.

Рис. 1. Зависимость траектории падения груза от выбора системы отсчета

В седьмом классе вы изучали понятия «инерция» и «инертность».

Инерция – это явление , при котором тело стремится сохранить свое первоначальное состояние . Если тело двигалось, то оно должно стремиться к тому, чтобы сохранять скорость этого движения. А если оно покоилось, то будет стремиться сохранить свое состояние покоя.

Инертность – это свойство тела сохранять состояние движения. Свойство инертности характеризуется такой величиной, как масса. Масса мера инертности тела . Чем тело тяжелее, тем его труднее сдвинуть с места или, наоборот, остановить.

Обратите внимание на то, что эти понятия имеют непосредственное отношение к понятию «инерциальная система отсчета » (ИСО), о которой будет идти речь ниже.

Рассмотрим движение тела (или состояние покоя) в случае, если на тело не действуют другие тела. Заключение о том, как будет вести себя тело в отсутствии действия других тел, впервые было предложено Рене Декартом (рис. 2) и продолжено в опытах Галилея (рис. 3).

Рис. 2. Рене Декарт

Рис. 3. Галилео Галилей

Если тело движется и на него не действуют другие тела, то движение будет сохраняться, оно будет оставаться прямолинейным и равномерным. Если же на тело не действуют другие тела, а тело покоится, то будет сохраняться состояние покоя. Но известно, что состояние покоя связано с системой отсчета: в одной СО тело покоится, а в другой вполне успешно и ускоренно движется. Результаты опытов и рассуждений приводят к выводу о том, что не во всех системах отсчета тело будет двигаться прямолинейно и равномерно или находиться в состоянии покоя при отсутствии действия на него других тел.

Следовательно, для решения главной задачи механики важно выбрать такую систему отчета, где все-таки выполняется закон инерции, где ясна причина, вызвавшая изменение движения тела. Если тело будет двигаться прямолинейно и равномерно в отсутствии действия других тел, такая система отсчета будет для нас предпочтительной, а называться она будет инерциальной системой отсчета (ИСО).

Точка зрения Аристотеля на причину движения

Инерциальная система отсчета - это удобная модель для описания движения тела и причин, которые вызывают такое движение. Впервые это понятие появилось благодаря Исааку Ньютону (рис. 5).

Рис. 5. Исаак Ньютон (1643-1727)

Древние греки представляли себе движение совершенно иначе. Мы познакомимся с аристотелевской точкой зрения на движение (рис. 6).

Рис. 6. Аристотель

Согласно Аристотелю, существует единственная инерциальная система отсчета - система отсчета, связанная с Землей. Все остальные системы отсчета, по Аристотелю, второстепенные. Соответственно, все движения можно разбить на два вида: 1) естественные, то есть те, которые сообщает Земля; 2) вынужденные, то есть все остальные.

Самый простой пример естественного движения - это свободное падение тела на Землю, так как Земля в этом случае сообщает телу скорость.

Рассмотрим пример принудительного движения. Это ситуация, когда лошадь тянет телегу. Пока лошадь прилагает силу, телега движется (рис. 7). Как только лошадь остановилась, остановилась и телега. Нет силы - нет скорости. Согласно Аристотелю, именно сила объясняет у тела наличие скорости.

Рис. 7. Принудительное движение

До сих пор некоторые обыватели считают справедливой точку зрения Аристотеля. Например, полковник Фридрих Краус фон Циллергут из «Похождения бравого солдата Швейка во время мировой войны» пытался проиллюстрировать принцип «Нет силы - нет скорости»: «Когда весь бензин вышел, - говорил полковник, - автомобиль принужден был остановиться. Это я сам вчера видел. И после этого еще болтают об инерции, господа. Не едет, стоит, с места не трогается. Нет бензина! Ну не смешно ли?»

Как и в современном шоу-бизнесе, там, где есть поклонники, всегда найдутся и критики. Появлялись свои критики и у Аристотеля. Они предлагали ему проделать следующий эксперимент: отпустите тело, и оно упадет точно под тем местом, где мы его отпустили. Приведем пример критики теории Аристотеля, аналогичный примерам его современников. Представьте, что летящий самолет выбрасывает бомбу (рис. 8). Упадет ли бомба ровно под тем местом, где мы ее отпустили?

Рис. 8. Иллюстрация к примеру

Конечно же, нет. Но ведь это естественное движение - движение, которое сообщила Земля. Тогда что же заставляет эту бомбу перемещаться еще и вперед? Аристотель отвечал так: дело в том, что естественное движение, которое сообщает Земля - это падание строго вниз. Но при движении в воздухе бомба увлекается его завихрениями, и эти завихрения как бы толкают бомбу вперед.

Что же будет, если воздух убрать и создать вакуум? Ведь если воздуха не будет, то, согласно Аристотелю, бомба должна упасть строго под тем местом, где ее бросили. Аристотель утверждал, что если воздуха не будет, то такая ситуация возможна, но на самом деле в природе не бывает пустоты, вакуума нет. А раз нет вакуума - нет и проблемы.

И только Галилео Галилей сформулировал принцип инерции в том виде, к которому мы привыкли. Причина изменения скорости - это действие на тело других тел. Если на тело не действуют другие тела или это действие скомпенсировано, то скорость тела меняться не будет.

Можно провести следующие рассуждения относительно инерциальной системы отсчета. Представьте ситуацию, когда движется автомобиль, затем водитель выключает двигатель, и дальше автомобиль движется по инерции (рис. 9). Но это некорректное утверждение по той простой причине, что с течением времени автомобиль остановится в результате действия силы трения. Поэтому в данном случае не будет равномерного движения - одно из условий отсутствует.

Рис. 9. Скорость автомобиля меняется в результате действия силы трения

Рассмотрим другой случай: с постоянной скоростью движется большой, крупный трактор при этом впереди он тащит большой груз ковшом. Такое движение можно рассматривать как прямолинейное и равномерное, потому что в этом случае все силы, которые действуют на тело, скомпенсированы, уравновешивают друг друга (рис. 10). Значит, систему отсчета, связанную с этим телом, мы можем считать инерциальной.

Рис. 10. Трактор движется равномерно и прямолинейно. Действие всех тел скомпенсировано

Инерциальных систем отсчета может быть очень много. Реально же такая система отсчета все-таки идеализирована, поскольку при ближайшем рассмотрении таких систем отсчета в полном смысле нет. ИСО - это некая идеализация, которая позволяет эффективно моделировать реальные физические процессы.

Для инерциальных систем отсчета справедлива формула сложения скоростей Галилея. Также заметим, что все системы отсчета, о которых мы говорили до этого, можно считать инерциальными в некотором приближении.

Впервые сформулировал закон, посвященный ИСО, Исаак Ньютон. Заслуга Ньютона заключается в том, что он первый научно показал, что скорость движущегося тела меняется не мгновенно, а в результате какого-то действия с течением времени. Вот этот факт и лег в основу создания закона, который мы называем первым законом Ньютона.

Первый закон Ньютона : существуют такие системы отсчета, в которых тело движется прямолинейно и равномерно или находится в состоянии покоя в том случае, если на тело не действуют силы или все силы, действующие на тело, скомпенсированы. Такие системы отсчета называются инерциальными.

По-другому иногда говорят так: инерциальной системой отсчета называется такая система, в которой выполняются законы Ньютона.

Почему Земля - неинерциальная СО. Маятник Фуко

В большом количестве задач необходимо рассматривать движение тела относительно Земли, при этом Землю мы считаем инерциальной системой отсчета. Оказывается, это утверждение не всегда справедливо. Если рассматривать движение Земли относительно своей оси или относительно звезд, то это движение совершается с некоторым ускорением. СО, которая движется с неким ускорением не может считаться инерциальной в полном смысле.

Земля вращается вокруг своей оси, а значит все точки, лежащие на ее поверхности, непрерывно меняют направление своей скорости. Скорость - векторная величина. Если ее направление меняется, то появляется некоторое ускорение. Следовательно, Земля не может быть правильной ИСО. Если подсчитать это ускорение для точек находящихся на экваторе (точки, которые обладают максимальным ускорением относительно точек, находящихся ближе к полюсам), то его значение будет . Индекс показывает, что ускорение является центростремительным. В сравнении с ускорением свободного падения , ускорением можно пренебречь и считать Землю инерциальной системой отсчета.

Однако при длительных наблюдениях забывать о вращении Земли нельзя. Убедительно это показал французский ученый Жан Бернар Леон Фуко (рис. 11).

Рис. 11. Жан Бернар Леон Фуко (1819-1868)

Маятник Фуко (рис. 12) - это массивный груз, подвешенный на очень длинной нити.

Рис. 12. Модель маятника Фуко

Если маятник Фуко вывести из состояния равновесия, то он будет описывать следующую траекторию отличную от прямой (рис. 13). Смещение маятника обусловлено вращением Земли.

Рис. 13. Колебания маятника Фуко. Вид сверху.

Вращением Земли обусловлен еще ряд интересных фактов. Например, в реках северного полушария, как правило, правый берег более крутой, а левый берег более пологий. В реках южного полушария - наоборот. Все это обусловлено именно вращением Земли и появляющейся в результате этого силы Кориолиса.

К вопросу о формулировке первого закона Ньютона

Первый закон Ньютона : если на тело не действуют никакие тела либо их действие взаимно уравновешено (скомпенсировано), то это тело будет находиться в состоянии покоя или двигаться равномерно и прямолинейно.

Рассмотрим ситуацию, которая укажет нам на то, что такую формулировку первого закон Ньютона необходимо подкорректировать. Представьте себе поезд с занавешенными окнами. В таком поезде пассажир не может определить, движется поезд или нет, по объектам снаружи. Рассмотрим две системы отсчета: СО, связанная с пассажиром Володей и СО, связанная с наблюдателем на платформе Катей. Поезд начинает разгоняться, скорость его увеличивается. Что произойдет с яблоком, которое лежит на столе? Оно по инерции покатится в противоположную сторону. Для Кати будет очевидно, что яблоко движется по инерции, но для Володи это будет непонятно. Он не видит, что поезд начал свое движение, и вдруг яблоко, лежащее на столе, начинается на него катиться. Как такое может быть? Ведь, по первому закону Ньютона, яблоко должно оставаться в состоянии покоя. Следовательно, нужно усовершенствовать определение первого закона Ньютона.

Рис. 14. Иллюстрация примеру

Корректная формулировка первого закона Ньютона звучит так: существуют такие системы отсчета, в которых тело движется прямолинейно и равномерно или находится в состоянии покоя в том случае, если на тело не действуют силы или все силы, действующие на тело, скомпенсированы.

Володя находится в неинерциальной системе отсчета, а Катя - в инерциальной.

Большая часть систем, реальных систем отсчета - неинерциальные. Рассмотрим простой пример: сидя в поезде, вы положили на стол какое-либо тело (например, яблоко). Когда поезд трогается с места, мы будем наблюдать такую любопытную картину: яблоко будет двигаться, покатится в противоположную движению поезда сторону (рис. 15). В данном случае мы не сможем определить, какие же тела действуют, заставляют яблоко двигаться. В этом случае говорят, что система неинерциальная. Но можно выйти из положения, введя силу инерции .

Рис. 15. Пример неинерциальной СО

Еще один пример: когда тело движется по закруглению дороги (рис. 16), то возникает сила, которая заставляет отклоняться тело от прямолинейного направления движения. В этом случае мы тоже должны рассмотреть неинерциальную систему отсчета , но, как и в предыдущем случае, тоже можем выйти из положения, вводя т. н. силы инерции .

Рис. 16. Силы инерции при движении по закругленной траектории

Заключение

Систем отсчета существует бесконечное множество, но среди них большинство - это те, которые мы инерциальными системами отсчета считать не можем. Инерциальная система отсчета - это идеализированная модель. Кстати, такой системой отсчета мы можем принять систему отсчета, связанную с Землей или какими-либо далекими объектами (например, со звездами).

Список литературы

  1. Кикоин И.К., Кикоин А.К. Физика: Учебник для 9 класса средней школы. - М.: Просвещение.
  2. Перышкин А.В., Гутник Е.М. Физика. 9 кл.: учебник для общеобразоват. учреждений / А. В. Перышкин, Е. М. Гутник. - 14-е изд., стереотип. - М.: Дрофа, 2009. - 300.
  3. Соколович Ю.А., Богданова Г.С. Физика: Справочник с примерами решения задач. - 2-е издание, передел. - X.: Веста: Издательство «Ранок», 2005. - 464 с.
  1. Интернет-портал «physics.ru» ()
  2. Интернет-портал «ens.tpu.ru» ()
  3. Интернет-портал «prosto-o-slognom.ru» ()

Домашнее задание

  1. Сформулируйте определения инерциальной и неинерциальной систем отсчета. Приведите примеры таких систем.
  2. Сформулируйте первый закон Ньютона.
  3. В ИСО тело находится в состоянии покоя. Определите, чему равно значение его скорости в ИСО, которая движется относительно первой системы отсчета со скоростью v ?

Инерциальная система отсчета (ИСО) - система отсчета, в которой справедлив закон инерции: все свободные тела (то есть такие, на которые не действуют внешнии силы или действие этих сил компенсируется) движутся в них прямолинено и равномерно или покоятся в них.

Неинерциальная система отсчета - произвольная система отсчета, не являющаяся инерциальной. Всякая система отсчета, движущаяся с ускорением относительно инерциальной, является неинерциальной.

Первый закон Ньютона - существуют инерциальные системы отсчета, т. е. такие системы отсчета, в которых тело движется равномерно и прямолинейно, если другие тела на него не действуют. Основная роль этого закона − подчеркнуть, что в этих системах отсчета все ускорения, приобретаемые телами, являются следствиями взаимодействий тел. Дальнейшее описание движения следует проводить только в инерциальных системах отсчета.

Второй закон Ньютона утверждает, что причина ускорения тела − взаимодействие тел, характеристикой которого является сила. Этот закон дает основное уравнение динамики, позволяющее, в принципе, находить закон движения тела, если известны силы, действующие на него. Этот закон может быть сформулирован следующим образом (рис. 100):

ускорение точечного тела (материальной точки) прямо пропорционально сумме сил, действующих на тело, и обратно пропорционально массе тела :

здесь F − результирующая сила, то есть векторная сумма всех сил, действующих на тело. На первый взгляд, уравнение (1) является другой формой записи определения силы, данного в предыдущем разделе. Однако это не совсем так. Во-первых, закон Ньютона утверждает, что в уравнение (1) входит сумма всех сил, действующих на тело, чего нет в определении силы. Во-вторых, второй закон Ньютона однозначно подчеркивает, что сила является причиной ускорения тела, а не наоборот.  

Третий закон Ньютона подчеркивает, что причиной ускорения является взаимное действие тел друг на друга. Поэтому силы, действующие на взаимодействующие тела, являются характеристиками одного и того же взаимодействия. С этой точки зрения нет ничего удивительного в третьем законе Ньютона (рис. 101):

точечные тела (материальные точки) взаимодействуют с силами, равными по величине и противоположными по направлению и направленными вдоль прямой, соединяющей эти тела :

где F 12 − сила, действующая на первое тело со стороны второго, a F 21 − сила, действующая на второе тело со стороны первого. Очевидно, что эти силы имеют одинаковую природу. Этот закон также является обобщением многочисленных экспериментальных фактов. Обратим внимание, что фактически именно этот закон является основой определения массы тел, данного в предыдущем разделе.  

Уравнение движения материальной точки в неинерциальной системе отсчёта может быть представлено в виде :

где -масса тела, ,- ускорение и скорость тела относительно неинерциальной системы отсчёта,- сумма всех внешних сил, действующих на тело,-переносное ускорение тела, -кориолисово ускорение тела, - угловая скорость вращательного движения неинерциальной системы отсчёта вокруг мгновенной оси, проходящей через начало координат,- скорость движения начала координат неинерциальной системы отсчёта относительно какой-либо инерциальной системы отсчёта.

Это уравнение может быть записано в привычной форме второго закона Ньютона , если ввести силы инерции :

В неинерциальных системах отсчета возникают силы инерции. Появление этих сил является признаком неинерциальности системы отсчета.

Система отсчета, движущаяся (относительно звезд) равномерно и прямолинейно (т. е. по инерции), называется инерциальной. Очевидно, что таких систем отсчета - неисчислимое множество, поскольку любая система, движущаяся относительно некоторой инерциальной системы отсчета равномерно и прямолинейно, тоже инерциальна, Системы отсчета, движущиеся (относительно инерциальной системы) с ускорением, называются неинерциальными.

Опыт показывает, что

во всех инерциальных системах отсчета все механические процессы протекают совершенно одинаково (при одинаковых условиях).

Это положение, названное механическим принципом относительности (или принципом относительности Галилея), было сформулировано в 1636 г. Галилеем. Галилей пояснял его на примере механических процессов, совершающихся в каюте корабля, плывущего равномерно и прямолинейно по спокойному морю. Для наблюдателя, находящегося в каюте колебание маятника, падение тел и другие механические процессы протекают точно так же, как и на неподвижном корабле. Поэтому, наблюдая эти процессы, невозможно установить ни величину скорости, ни даже сам факт движения корабля. Чтобы судить о движении корабля относительно какой-либо системы отсчета (например, поверхности еоды), необходимо вести наблюдения и за этой системой (видеть, как удаляются предметы, лежащие на воде, и т. п.).

К началу XX в. выяснилось, что не только механические, но и тепловые, электрические, оптические и все другие процессы и явления природы протекают совершенно одинаково во всех инерциальных системах отсчета. На этом основании Эйнштейн в 1905 г. сформулировал обобщенный принцип относительности, названный впоследствии принципом относительности Эйнштейна:

во всех инерциальных системах отсчета все физические процессы протекают совершенно одинаково (при одинаковых условиях).

Этот принцип наряду с положением о независимости скорости распространения света в вакууме от движения источника света (см. § 20) лег в основу специальной теории относительности, разработанной Эйнштейном.

Законы Ньютона и другие рассмотренные нами законы динамики, выполняются только в инерциальных системах отсчета. В неинерциальных системах отсчета эти законы, вообще говоря, уже несправедливы. Рассмотрим простой пример, поясняющий последнее утверждение.

На совершенно гладкой платформе, движущейся равномерно и прямолинейно, лежит шар массой на этой же платформе находится наблюдатель. Другой наблюдатель стоит на Земле недалеко от места, мимо которого вскоре должна пройти платформа. Очевидно, что оба наблюдателя связаны с инерциальными системами отсчета.

Пусть теперь, в момент прохождения мимо наблюдателя, связанного с Землей, платформа начнет двигаться с ускорением а, т. е. сделается неинерциальной системой отсчета. При этом шар, ранее покоившийся относительно платформы, придет (относительно нее же) в движение с ускорением а, противоположным по направлению и равным по величине, ускорению, приобретенному платформой. Выясним, как выглядит поведение шара с точек зрения каждого из наблюдателей.

Для наблюдателя, связанного с инерциальной системой отсчета - Землей, шар продолжает двигаться равномерно и прямолинейно в полном соответствии с законом инерции (поскольку на него не действуют никакие силы, кроме силы тяжести, уравновешиваемой реакцией опоры).

Наблюдателю, связанному с неинерциальной системой отсчета - платформой, представляется иная картина: шар приходит в движение и приобретает ускорение - а без воздействия силы (поскольку наблюдатель не обнаруживает воздействия на шар каких-либо других тел, сообщающих шару ускорение). Это явно противоречит закону инерции. Не выполняется и второй закон Ньютона: применив его, наблюдатель получил бы, что (сила) а это невозможно, так как ни ни а не равны нулю.

Можно, однако, сделать законы динамики применимыми и для описания движений в неинерциальных системах отсчета, если ввести в рассмотрение силы особого рода - силы инерции. Тогда в нашем примере наблюдатель, связанный с платформой, может считать, что шар пришел в движение под действием силы инерции

Введение силы инерции позволяет записывать второй закон Ньютона (и его следствия) в обычной форме (см. § 7); только под действующей силой надо теперь понимать результирующую «обычных» сил и сил инерции

где масса тела, а - его ускорение.

Силы инерции мы назвали силами «особого рода», во-первых, потому, что они действуют только в неинерциальных системах отсчета, и, во-вторых, потому, что для них в отличие от «обычных» сил невозможно указать, действием каких именно других тел (на рассматриваемое тело) они обусловлены. Очевидно, по этой причине к силам инерции невозможно применить третий закон Ньютона (и его следствия); это является третьей особенностью сил инерции.

Невозможность указать отдельные тела, действием которых (на рассматриваемое тело) обусловлены силы инерции, не означает, конечно, что возникновение этих сил вообще не связано с действием каких-либо материальных тел. Имеются серьезные основания предполагать, что силы инерции обусловлены действием всей совокупности тел Вселенной (массой Вселенной в целом).

Дело в том, что между силами инерции и силами тяготения существует большое сходство: и те и другие пропорциональны массе тела, на которое они действуют, и потому ускорение, сообщаемое телу каждой из этих сил, не зависит от массы тела. При определенных условиях эти силы вообще невозможно различить. Пусть, например, где-то в космическом пространстве движется с ускорением (обусловленным работой двигателей) космический корабль. Находящийся в нем космонавт будет при этом испытывать силу, прижимающую его к «полу» (задней по отношению к направлению движения стенке) корабля. Эта сила создаст точно такой же эффект и вызовет у космонавта такие же ощущения, какие вызвала бы соответствующая сила тяготения.

Если космонавт считает, что его корабль движется с ускорением а относительно Вселенной, то он назовет действующую на него силу силой инерции. Если же космонавт будет считать свой корабль неподвижным, а Вселенную - несущейся мимо корабля с таким же ускорением а, то он назовет эту силу силой тяготения. И обе точки зрения будут совершенно равноправными. Никакой эксперимент, выполненный внутри корабля, не сможет доказать правильность одной и ошибочность другой точки зрения.

Из рассмотренного и других аналогичных примеров следует, что ускоренное движение системы отсчета эквивалентно (по своему действию на тела) возникновению соответствующих сил тяготения. Это положение получило название принципа эквивалентности сил тяготения и инерции (принципа эквивалентности Эйнштейна); данный принцип положен в основу общей теории относительности.

Силы инерции возникают не только в прямолинейно движущихся, но и во вращающихся неинерциальных системах отсчета. Пусть, например, на горизонтальной платформе, могущей вращаться вокруг вертикальной оси, лежит тело массой связанное с центром вращения О резиновым шнуром (рис. 18). Если платформа начнет вращаться с угловой скоростью со (и, следовательно, превратится в неинерциальную систему), то благодаря трению тело тоже будет вовлечено во вращение. Вместе с тем оно будет перемещаться в радиальном направлении от центра платформы до тех пор, пока возрастающая сила упругости растягивающегося шнура не остановит это перемещение. Тогда тело начнет вращаться на расстоянии от центра О.

С точки зрения наблюдателя, связанного с платформой, перемещение шара относительно нее обусловлено некоторой силой Это есть сила инерции, поскольку она не вызвана действием на шар других определенных тел; ее называют центробежной силой инерции. Очевидно, что центробежная сила инерции равна по величине и противоположна по направлению силе упругости растянутого шнура, играющей роль центростремительной силы, которая действует на тело, вращающееся по отношению к инерциальной системе (см. § 13) Поэтому

следовательно, центробежная сила инерции пропорциональна расстоянию тела от оси вращения.

Подчеркнем, что центробежную силу инерции не следует смешивать с «обычной» центробежной силой, упомянутой в конце § 13. Это силы различной природы, приложенные к разным объектам: центробежная сила инерции приложена к телу, а центробежная сила - к связи.

В заключение отметим, что с позиции принципа эквивалентности сил тяготения и инерции простое объяснение получает действие всех центробежных механизмов: насосов, сепараторов и т. п. (см. § 13).

Любой центробежный механизм можно рассматривать как вращающуюся неинерциальную систему, вызывающую появление поля тяготения радиальной конфигурации, которое в ограниченной области значительно превосходит поле земного тяготения. В этом поле более плотные частицы вращающейся среды или частицы, слабо связанные с ней, отходят к ее периферии (как бы идут «ко дну»).

Инерциальная система отсчёта

Инерциа́льная систе́ма отсчёта (ИСО) - система отсчёта , в которой справедлив первый закон Ньютона (закон инерции): все свободные тела (то есть такие, на которые не действуют внешние силы или действие этих сил компенсируется) движутся прямолинейно и равномерно или покоятся . Эквивалентной является следующая формулировка, удобная для использования в теоретической механике :

Свойства инерциальных систем отсчёта

Всякая система отсчёта, движущаяся относительно ИСО равномерно и прямолинейно, также является ИСО. Согласно принципу относительности , все ИСО равноправны, и все законы физики инвариантны относительно перехода из одной ИСО в другую. Это значит, что проявления законов физики в них выглядят одинаково, и записи этих законов имеют одинаковую форму в разных ИСО.

Предположение о существовании хотя бы одной ИСО в изотропном пространстве приводит к выводу о существовании бесконечного множества таких систем, движущихся друг относительно друга со всевозможными постоянными скоростями. Если ИСО существуют, то пространство будет однородным и изотропным, а время - однородным; согласно теореме Нётер , однородность пространства относительно сдвигов даст закон сохранения импульса , изотропность приведёт к сохранению момента импульса , а однородность времени - к сохранению энергии движущегося тела.

Если скорости относительного движения ИСО, реализуемых действительными телами, могут принимать любые значения, связь между координатами и моментами времени любого «события» в разных ИСО осуществляется преобразованиями Галилея .

Связь с реальными системами отсчёта

Абсолютно инерциальные системы представляют собой математическую абстракцию, естественно, в природе не существующую. Однако существуют системы отсчёта, в которых относительное ускорение достаточно удалённых друг от друга тел (измеренное по эффекту Доплера) не превышает 10 −10 м/с², например, Международная небесная система координат в сочетании с Барицентрическим динамическим временем дают систему, относительные ускорения в которой не превышают 1,5·10 −10 м/с² (на уровне 1σ) . Точность экспериментов по анализу времени прихода импульсов от пульсаров, а вскоре - и астрометрических измерений, такова, что в ближайшее время должно быть измерено ускорение Солнечной системы при её движении в гравитационном поле Галактики, которое оценивается в м/с² .

С разной степенью точности и в зависимости от области использования инерциальными системами можно считать системы отсчёта, связанные с: Землёй , Солнцем , неподвижные относительно звезд.

Геоцентрическая инерциальная система координат

Применение Земли в качестве ИСО, несмотря на приближённый его характер, широко распространено в навигации . Инерциальная система координат, как часть ИСО строится по следующему алгоритму. В качестве точки O- начала координат выбирается центр земли в соответствии с принятой её моделью. Ось z – совпадает с осью вращения земли. Оси x и y находятся в экваториальной плоскости. Следует заметить, что такая система не участвует во вращении Земли.

Примечания

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Инерциальная система отсчёта" в других словарях:

    Система отсчёта, в к рой справедлив закон инерции: матер. точка, когда на неё не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения. Всякая система отсчёта,… … Физическая энциклопедия

    ИНЕРЦИАЛЬНАЯ Система ОТСЧЁТА, смотри Система отсчета … Современная энциклопедия

    Инерциальная система отсчёта - ИНЕРЦИАЛЬНАЯ СИСТЕМА ОТСЧЁТА, смотри Система отсчета. … Иллюстрированный энциклопедический словарь

    инерциальная система отсчёта - inercinė atskaitos sistema statusas T sritis fizika atitikmenys: angl. Galilean frame of reference; inertial reference system vok. inertiales Bezugssystem, n; Inertialsystem, n; Trägheitssystem, n rus. инерциальная система отсчёта, f pranc.… … Fizikos terminų žodynas

    Система отсчёта, в которой справедлив закон инерции: материальная точка, когда на неё не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения. Всякая… … Большая советская энциклопедия

    Система отсчёта, в к рой справедлив закон инерции, т. е. тело, свободное от воздействий со стороны др. тел, сохраняет неизменной свою скорость (по абс. значению и по направлению). И. с. о. является такая (и только такая) система отсчёта, к рая… … Большой энциклопедический политехнический словарь

    Система отсчёта, в к рой справедлив закон инерции: материальная точка, на к рую не действуют никакие силы, находится в состоянии покоя или равномерного прямолинейного движения Любая система отсчёта, движущаяся относительно И. с. о. поступательно … Естествознание. Энциклопедический словарь

    инерциальная система отсчёта - Система отсчёта, по отношению к которой изолированная материальная точка находится в покое или движется прямолинейно и равномерно … Политехнический терминологический толковый словарь

    Система отсчёта, в которой справедлив закон инерции: материальная точка, на которую не действуют никакие силы, находится в состоянии покоя или равномерного прямолинейного движения. Любая система отсчёта, движущаяся относительно инерциальной… … Энциклопедический словарь

    Система отсчёта инерциальная - система отсчёта, в которой справедлив закон инерции: материальная точка, когда на неё не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения. Всякая система… … Концепции современного естествознания. Словарь основных терминов