Работа гипоталамо гипофизарной системы. Болезни гипофиза и гипоталамо-гипофизарной системы

ГИПОТАЛАМО-ГИПОФИЗАРНАЯ СИСТЕМА - функциональный комплекс, состоящий из гипоталамической области промежуточного мозга и гипофиза.

Главное функциональное значение гипоталамо-гипофизарной системы - регуляция вегетативных функций организма. Со стороны гипоталамуса она осуществляется парааденогипофизарным путем, минуя аденогипофиз, и трансаденогипофизарным путем через аденогипофиз, когда вегетативные функции регулируются через комплекс периферических, эндокринных желез-мишеней, зависимых от гипофиза. Есть еще парагипофизарный, чисто нейропроводниковый путь, реализующийся через систему эфферентных центральных нейронов ствола головного мозга и спинного мозга, периферических симпатических и парасимпатических нейронов.

Существенный вклад в изучение морфологии, физиологии и патологии Г.-г. с. внесли отечественные ученые Н. М. Иценко, Л. Я. Пинес, Н. И. Гращенков и зарубежные исследователи С. Рамон-и-Кахаль, X. Кушинг, Гревинг (R. Greving), Шаррер (Е. Scharrer), Сентаготаи (J. Szentagothai) и др.

Г.-г. с. образована двумя генетически различными частями - гипоталамусом (см.) и гипофизом (см.).

С возрастом наблюдаются инволюционные изменения, выражающиеся уменьшением числа нейросекреторных клеток гипоталамуса и гипофиза, их частичным пикнозом (см.), изменением распределения тигроидного вещества, различными изменениями нервных клеток, что приводит к снижению секреторной активности.

По мнению некоторых авторов, главными структурными и функциональными компонентами Г.-г. с. являются два рода нервных клеток: нейросекреторные - вырабатывающие пептиды (пептидергические нейроны) и клетки, секретирующие моноамины (моноаминергические нейроны). Нейросекреторные клетки, продуцирующие пептидные нейро-гормоны, образуют крупноклеточные ядра: надзрительное (nucleus supraopticus), околожелудочковое (nucleus paraventricularis) и заднее (nucleus post.) ядра.

Гомориположительные клетки - самые крупные элементы в гипоталамусе, иногда многоядерные, гигантские, поэтому нейросекреторные формации получили название крупно-клеточных центров (ядер), в отличие от остальных мелкоклеточных ядер гипоталамуса. Нейросекрет, вырабатываемый этими клетками, окрашивается хромовым гематоксилином или паральдегидфуксином по методу Гомори и называется гомориположительным. Электронномикроскопически он определяется в телах и отростках этих клеток, но особенно в нервных окончаниях (терминалях) аксонов в виде элементарных гранул двух размеров: 100-150 нм (1000-1500 А) и 150-300 нм (1500-3000 А). Нейросекрет, синтезирующийся в нейроплазме (перикарионах) нейросекреторных клеток, перемещается с током нейро-плазмы в терминальные отделы отростков. Основная масса гранул поступает в заднюю долю гипофиза. Здесь терминальные отделы аксонов нейросекреторных клеток (нейросекреторные окончания) образуют контакты с капиллярами.

Благодаря большому скоплению окончаний аксонов и капилляров в нейрогипофизе эта часть гипоталамо-гипофизарной нейросекреторной системы получила название нейрогемального органа.

Однако в современной нейроэндокринологии преобладает мнение, что нейросекреторные образования гипоталамуса представлены не только гомориположительными клетками, которые являются холинергическими и продуцируют октопептидные нейрогормоны (вазопрессин и окситоцин). Наряду с гомориположительными клетками переднего гипоталамуса вторую группу составляют мелкие нейросекреторные клетки адренергической природы, локализующиеся в медиобазальном гипоталамусе (аденогипофизотропная зона) и образующие нечеткоограниченные ядра: переднее гипоталамическое (nucleus hupothalamicus ant.), супрахиазматическое (nucleus suprachiasmaticus) ядра и преоптическая зона (zona praeopticus); аркуатное, или инфундибулярное (nucleus arcuatus, nucleus infundibularis), перивентрикулярные ядра (nuclei periventriculares, anr. et post.), вентро-медиальное (nucleus ventromedialis) и дорсо-медиальное (nucleus dorsomedialis) ядра. Они вырабатывают олигопептидные гормоны (см. Гипоталамические нейрогормоны). Секреция их (рилизинг-гормонов) регулируется главным образом соотношением концентраций норадреналина, ацетилхолина и серотонина в гипоталамусе.

Общим морфо-функциональным признаком всех отделов нейрогипофиза является то, что в них на многочисленных капиллярах оканчиваются терминали нейросекреторных пептидергических, адренергических и, по мнению некоторых исследователей, также и холинергических волокон. Глиальная строма нейрогипофиза представлена питуицитами (клетки нейроглии), обеспечивающими трофику нервных волокон и их терминалей; описана способность этих клеток к фагоцитозу, в частности отмечено поглощение этими клетками продуктов метаболизма.

Кровообращение Г.-г. с. представлено богатой сетью капилляров, образующейся за счет передней и задней гипофизарных артерий из системы артериального круга мозга (см. Гипофиз).

Информация о функциональном состоянии висцеральных органов и внутренней среды организма, а также об изменениях, происходящих во внешней среде, поступает соответственно от интеро- и экстерорецепторов преимущественно в центры среднего мозга, в частности в ретикулярную формацию, а оттуда уже в гипоталамус. Тонкая интеграция вегетативных функций организма осуществляется высшими отделами ц. н. с., напр, лимбической системой. От всех указанных отделов головного мозга импульсы по многочисленным проводникам поступают на нейросекреторные клетки. Все нейросекреторные пептидергические клетки представляют собой конечное эфферентное звено в реализации нервных влияний на деятельность аденогипофиза и висцеральных органов, в т. ч. и эндокринных желез-мишеней.

Важное значение в нейроэндокринных отношениях принадлежит обратным связям, среди которых различаются «короткие» (аденогипофиз - гипоталамус) и «длинные» связи (железы-мишени - гипоталамус). Благодаря этим связям в составе целого организма осуществляется саморегуляция нейро-эндокринного комплекса. Так, допускается регуляторное влияние как тройных гормонов аденогипофиза, так и гормонов периферических желез на интенсивность продукции в перикарионах нейросекреторных клеток и выделение из терминалей их аксонов, аденогипофизотропных, а, возможно, также и висцеротропных пептидных нейро-гормонов.

Рассмотренное единство комплекса гипоталамус - гипофиз ярко проявляется при его патологии. Это выражается в трудности дифференцировки локализации патол, процессов (в гипоталамусе или в гипофизе).

Библиография: Алешин Б.В. Гиотофизиология гипоталамо-гипофизарной системы, М., 1971, библиогр.; Войткевич А. А. Нейросекреция, Л., 1967, библиогр.; Поленов А. Л. Гипоталамическая нейросекреция, Л., 1971, библиогр.; Поленов А. Л. и Беленький М. А. О некоторых закономерностях становления нейрогемальных отделов гипоталамо-гипофизарной нейросекреторной системы в онто- и филогенезе позвоночных, Журн, эволюц, биохим, и физиол., т. 9, № 4, с. 355, 1973, библиогр.; Тонких А. В. Гипоталамо-гипофизарная область и регуляция физиологических функций организма, М.- Л., 1965, библиогр..; Aspects of neuroendocrinology, ed. by W. Bargmanna. B. Scharrer, Heidelberg- N. Y., 1970; Bargmann W. Neurosecretion, Int. Rev. Cytol., v. 19, p. 183, 1966, bibliogr.; Scharrer E. a. Scharrer B. Neuroendocrinology, N. Y.-L., 1963, bibliogr.

Б. В. Алешин, А. Л. Поленов.

Гипоталамо-гипофизарная система связывает эндокринную систему с нервной.

Она регулирует в организме синтез гормонов, необходимых для корректной работы органов.

Нарушение функций гипоталамо-гипофизарной системы приводит к патологиям со стороны внутренних органов и даже может стать причиной смерти.

Зачем нужна гипоталамо-гипофизарная система

Правильная работа всего организма невозможна без правильной работы нервной и эндокринной систем. Нервная система, образованная непосредственно нейронами (клетками нервной ткани), нейроглией (вспомогательными клетками, составляющими около 40% объема нервной системы) и соединительной тканью, пронизывает весь организм. Нейроны проводят нервные импульсы. Нейроглия окружает нервные клетки, защищая их и обеспечивая условия для передачи и образования импульсов, а также выполняет часть метаболических процессов нервных клеток. Соединительная ткань необходима для связи частей нервной системы. Центральную нервную систему (ЦНС) образуют головной и спинной мозг, а периферическую – лежащие за их пределами нервы и нервные узлы.

Даже примитивные животные, например, коралловые полипы, имеют нервную систему.

Эндокринная система регулирует работу внутренних органов, используя гормоны. Эндокринные клетки присутствуют в большинстве тканей организма. Правильное функционирование эндокринных желез дает организму способность адаптироваться к условиям окружающей среды, одновременно поддерживая скоординированную работу органов самого организма.

Слаженное взаимодействие нервной и эндокринной систем обеспечивает гипоталамо-гипофизарная система, образованная гипофизом и ножкой гипоталамуса. отвечает за выработку гормонов, которые регулируют обмен веществ, рост тканей, репродуктивную функцию. Это маленькая, массой менее грамма, область, расположенная у основания головного мозга и состоящая из трех долей. Гипоталамус находится в промежуточном мозге и связан почти со всеми отделами ЦНС. Список его функций обширен:

  • терморегуляция тела;
  • формирования эмоционального ответа;
  • формирование особенностей поведения.

Гипоталамус связывает нервную систему с эндокринной системой через гипофиз. Гипоталамо-гипофизарная система формируется рано, еще на первых неделях внутриутробного развития. Тогда же запускается и синтез гормонов.

Механизм работы

В гипоталамусе находятся специальные нейросекреторные клетки – нечто среднее между эндокринными клетками и . Они совмещают функции обоих видов клеток, воспринимая поступающие из разных областей нервной системы сигналы и выделяя в кровь нейросекреты, занимающие промежуточную позицию между гормонами и нейромедиаторами. Они называются рилизинг-гормонами.

Рилизинг-гормоны разделяются на освобождающие (либерины) и останавливающие (статины). Первые способствуют секреции гипофизом, а под действием вторых она, соответственно, приостанавливается.

Под действием рилизинг-гормонов гипофиз выделяет гормоны, контролирующие работу секреторных желез. Если некоторые железы выделяют слишком много или, наоборот, слишком мало определенных гормонов, гипоталамус фиксирует отклонение от нормы их концентрации в крови и тормозит либо стимулирует активность гипофиза, таким образом регулируя деятельность желез.

Иными словами, вся система работает по механизму отрицательной обратной связи. Рост (или снижение) уровня гормона какой-либо эндокринной железы вызывает приостановку (или усиление) синтеза соответствующего гормона в гипофизе и торможение (либо стимуляцию) производства гормона определенной железой. Например, при увеличении концентрации в организме тироксина, ассоциированного со щитовидной железой, происходит угнетение синтеза тиреотропина в гипофизе, что вызывает торможение гормонообразующей функции самой щитовидки. Подобные функциональные нарушения при их продолжительном течении вызывают морфологические изменения в эндокринной системе. Продолжительный избыток гормона вызывает атрофию железы, а дефицит – патологическое ее разрастание.

На гипоталамо-гипофизарную систему также влияют сигналы нейронов ЦНС. Информация от органов чувств (зрительная, слуховая, обонятельная, осязательная и т. д.) поступает в ЦНС, которая направляет ее в гипоталамус. Там она преобразуется в регулирующий сигнал и гипофиз получает «команду» активизировать или затормозить синтез веществ.

За что отвечают вещества

У каждого рилизинг-гормона своя «зона ответственности». Гонадолиберины (фоллиберин и люлиберин) регулируют выработку гонадотропинов – лютеинизирующего и фолликулостимулирующего гормона. От них зависят нормальные уровни эстрогенов, прогестерона и тестостерона. Соматолиберин и соматостатин отвечают за синтез соматотропина. Пролактолиберин и пролактостатин контролирует синтез пролактина. Тиролиберин влияет на содержание в крови тироксина и трийодтиронина. Кортиколиберин способствует выработке адренокортикотропинов.

Соматотропин образуется в передней доле гипофиза. Гормоны роста способствуют росту тканей. Образование соматотропина зависит от множества факторов, в том числе от физической нагрузки, прочих веществ, приема лекарственных препаратов. Вместе с другими частицами он приспосабливает организм к нехватке пищи, используя свободные жировые кислоты из жировых отложений в качестве источника энергии.

Адренокортикотропин способствует выработке и секреции гормонов коры надпочечников. За синтез отвечают передняя и промежуточная доли гипофиза и некоторые нейроны ЦНС. Его секрецию стимулирует любой стресс, от эмоциональных переживаний до хирургических вмешательств.

Тиреотропин необходим для синтеза и секреции йодосодержащих гормонов щитовидной железы. Синтез тиреотропина осуществляется в передней доле гипофиза.

Гонадотропины представлены фолликулостимулирующим и лютеинизирующим гормонами, а также хорионическим гонадотропином плаценты. У мужчин фолликулостимулирующее вещество контролирует сперматогенез, у женщин необходим для роста фолликулов яичника.

Лютеинизирующее вещество у мужчин способствует синтезу тестостерона в яичках, у женщин — синтезу в яичниках эстрогенов и прогестерона. Также он стимулирует овуляцию. Хорионический гонадотропин при беременности участвует в образовании прогестерона.

Пролактин во время полового созревания ускоряет развитие груди у девочек. У взрослых беременных и родивших женщин он стимулирует образование молока. Выработка пролактина осуществляется в передней доле гипофиза. При беременности ее объем увеличивается вдвое за счет роста количества и увеличения размера лактотрофов, клеток, производящих пролактин.

Меланотропины отвечают за пигментацию кожи и слизистых оболочек.

Также в формировании гипоталамо-гипофизарных взаимоотношений участвуют гормоны окситоцин и вазопрессин. Они образуются в гипоталамусе и накапливаются в задней доле гипофиза. Окситоцин необходим при кормлении грудью – он способствует выделению вырабатываемого с помощью пролактина молока. Также он важен для сокращений матки при родах. Окситоцин влияет на психику, вызывая чувство доверия к партнеру, спокойствия и удовлетворения, а также уменьшения страха. Вазопрессин регулирует агрессию и, возможно, связан с механизмами памяти. Кроме того, вазопрессин работает как антидиуретик.

Рилизинг-гормоны, помимо регуляции работы гипофиза, оказывают психотропный эффект. Так, кортиколиберин провоцирует возникновение чувства тревоги. Тиреолиберин оказывает противосудорожное действие. Гонадолиберин регулирует половое влечение и повышает настроение. А вот часть веществ, выделяемых гипофизом, например, фолликулостимулирующий и лютеотропный, способны только воздействовать на эндокринные железы.

Патологии структуры

Органические поражения мозга при воспалительных процессах, опухолях, травмах, кровоизлияниях, тромбозах мозговых сосудов приводят к повреждению системы и, как следствие, развитию тяжелых эндокринных нарушений. Нарушение синтеза в гипоталамусе определенного либерина или статина вызывает проблемы с выработкой связанного с ним гормона. Также гипоталамо-гипофизарная система может оказаться поражена не напрямую, а при нарушении работы эндокринных желез.

Самая частая причина повреждения – сосудистые нарушения.

Так, сахарный диабет зачастую сопровождается атеросклеротическим повреждением поджелудочной железы.

Среди распространенных патологий деятельности – отклонения в синтезе соматотропина. Недостаточный или избыточный синтез веществ способствует развитию карликовости или гигантизма соответственно. Гигантизм нередок, он встречается у 1-3 человек из 1000. Симптомы болезни проявляются с началом полового созревания. Избыток соматотропина в уже сформировавшемся, взрослом организме приводит к акромегалии. При этой патологии наблюдаются:

  • расширение кости;
  • увеличение в диаметре пальцев;
  • разрастается соединительная ткань.

Вследствие этого утолщаются и теряют подвижность пальцы, увеличиваются уши, губы, нос. Акромегалия развивается медленно, изменения в организме длятся годами. Она приводит к ухудшению умственных способностей, повышенной утомляемости, головным болям, сдавлению нервов, деформирующему артрозу. Среди знаменитостей, страдавших акромегалией – ставший прообразом мультипликационного персонажа Шрека французский рестлер Морис Тийе и российский боксер Николай Валуев.

На протяжении жизни возможно проявление и карликовости, и гигантизма, и акромегалии – так было с австрийцем Адамом Райнером. До 26 лет рост мужчины составлял 122 см, однако из-за опухоли гипофиза он за несколько лет вырос почти на метр. Не помогло справиться с проблемой даже удаление опухоли. Райнер умер в 51 год, к тому времени его рост достиг 238 см.

Излишняя выработка адренокортикотропного гормона вызывает разрастание коры надпочечников, нехватка же приводит к эндокринной недостаточности надпочечников. Избыточная работа щитовидной железы провоцирует развитие тиреотоксикоза, который вызывает потерю веса, проблемы с сосудами, диарею, нарушения со стороны ЦНС и работы сердца. Нехватка гормонов приводит к гипотиреозу, который сопровождается выпадением волос, отеками, сухостью кожи, сонливостью. В запущенной форме гипотиреоз приводит к коматозному состоянию, которое, при отсутствии неотложной помощи, в 80% заканчивается смертью. Повышение выработки гонадотропинов приводит к слишком раннему половому созреванию, недостаток – к поражению половых желез и бесплодию.

Чтобы скорректировать функциональность, используются препараты, снижающие синтез либо заместительная терапия. Опухоли мозга подлежат удалению в случае такой возможности.

Гипоталамо-гипофизарная система определяет функциональное состояние всей эндокринной системы. Анатомическая и функциональная взаимосвязь гипоталамуса и гипофиза обеспечивает также единение нервной и эндокринной систем.

Гипоталамус (подбугорье) занимает часть промежуточного мозга книзу от тал амуса под гипоталамической бороздкой и представляет собой скопление нервных клеток с многочисленными афферентными и эфферентными связями. Как вегетативный центр, гипоталамус координирует функцию различных систем и органов, регулирует функцию желез внутренней секреции (гипофиза, яичников, щитовидной железы и надпочечников), обмена веществ (белкового, жирового, углеводного, минерального и водного), температурного баланса и деятельности всех систем организма (вегетососудистой, пищеварительной, выделительной, дыхательной и др.).

Эта многогранная функция гипоталамуса обеспечивается нейрогормонами, поступающими в него через портальную систему сосудов после высвобождения из окончаний гипоталамических нервных волокон. Гипоталамические гормоны высвобождаются в пульсирующем режиме и контролируют функцию гипофиза, а их уровень в свою очередь определяется уровнем в крови гормонов периферических эндокринных желез, достигающих гипоталамуса, по принципу обратной связи (сигналами активации при недостатке гормонов или ингибирования при высоком их уровне).

По утвержденной Международной номенклатуре (1975), гипоталамические рилизинг-гормоны делятся по функциональному значению на люлиберины и статины (освобождающие и тормозящие). К настоящему времени известно 10 рилизинг-гормонов: ЛГРГ - люлиберин и ФСГРГ - фолиберин (гонадотропные либерины), КТГРГ - кортиколиберин, ТТГРГ - тиролиберин, СТГРГ - соматолиберин, ПРЛРГ - пролактолиберин, МСГРГ - меланолиберин, СИРГ - соматостатин, ПИФРГ - пролактостатин и МИФРГ - меланостатин.

Всего же нейроны гипоталамуса секретируют около 40 соединений, многие из которых выполняют роль синаптических модуляторов или медиаторов нейросекреторной функции гипоталамуса. В нем, в частности, локализуются вазопрессин, окситоцин, нейрофизин. В то же время биосинтез биологически активных пептидов происходит не только в гипоталамусе. Так, СТГРГ образуется в поджелудочной железе, слизистой оболочке кишечника и в церебральных нейросекреторных клетках, а ТТГРГ-и в других отделах ЦНС.

Гонадотропин - рилизинг-гормоны (ЛГРГ и ФСГРГ) полипептидной природы (декапептид) отдельно не выделены. Они стимулируют секрецию гипофизом гонадотропных гормонов, которые влияют на яичники, что сопровождается циклическими изменениями в половых органах-мишенях. Синтезирован люлиберин (ЛГРГ) для клинического применения. Он индуцирует половое созревание, либидо, потенцию, овуляцию или сперматогенез. Люлиберин оказывает выраженное влияние на половое поведение животных, воздействуя на сексуальные центры ЦНС.

Кортикотропный рилизинг-гормон (КТГРГ) - кортиколиберин локализуется в основном в задней доле гипоталамуса и регулирует функцию коры надпочечников, используется в клинической практике.

ТТГРГ - тиролиберин (ТЛ) , оказывая выраженное действие по освобождению АКТГ, также способствует выделению липотропина, меланоцитстимулирующего гормона и эндорфинов. Он выделен в чистом виде и синтезирован, обладает выраженным ТТГ-освобождающим эффектом, активно влияет на поведенческие реакции, усиливает двигательную активность, проявляет депрессивные эффекты. Наряду с гормональными эффектами ТЛ выступает и в роли нейротрансмиттера. Тиролиберин влияет на секрецию пролактина и стимулирует выделение гормона роста. С помощью пробы с тиролиберином осуществляются дифференциальная диагностика форм гипотиреоза первичного и вторичного генеза, различных причин галактореи, болезни Иценко-Кушинга.

Гормон роста рилизинг-гормон (СТГРГ) - соматолиберин наряду с другими функциями регулирует продукцию и выделение гормона роста.

Пролактин рилизинг-гормон (ПРЛРГ) - пролактолиберин (ПЛ) стимулирует секрецию пролактина гипофизом. Обнаружен в срединном возвышении, переднем гипоталамусе и экстрагипо-таламических структурах. Химическая природа не установлена и вопрос о его применении окончательно не решен.

Меланоцитстимулирующий рилизинг-гормон (МСГРГ) - меланолиберин (МЛ) влияет на функцию передней и промежуточной долей гипофиза, где эскпрессируется ген по выработке и освобождению этого гормона или проопиомеланокортина (ПОМК) в различных тканях (мозг, плацента, легкие, ЖКТ и др.) в различных вариантах.

Пролактинингибирующий рилизинг-гормон (ПРЛИГ-РГ) пролактостатин (ПРЛС) - гипоталамический пептидный фактор с пролактинингибирующими свойствами (ПИФ) и окончательно не выясненной структурой. Регуляция синтеза и секреции пролактина осуществляется гипоталамическими агентами. Дофамин тормозит синтез и секрецию пролактина. В последние годы открыт новый полипептид, обладающий одновременно гонадоли-бериновой и пролактостатической активностью.

Его называют гонадолиберином ассоциированным (связанным) пептидом (ГАТТ) с мощными свойствами ингибирования секреции пролактина. Возможно, это и есть пролактостатин. На угнетение освобождения ПРЛ влияет соматостатин, который ингибирует активность тиролиберина по освобождению.

Соматоингибирующий рилизинг-гормон (СИГРГ) - соматостатин обнаружен не только в гипоталамусе, но и в других отделах нервной системы, а также в периферических тканях (поджелудочная железа, желудочно-кишечный тракт). Кроме ингибирования секреции гормона роста, соматостатин угнетает освобождение ТТГ, пролактина, инсулина и глюкагона.

Меланоцитингибирующий рилизинг-гормон (МИРГ) регулирует функцию промежуточной доли гипофиза.

Гипофиз обоснованно считается главной железой, вырабатывающей ряд гормонов, непосредственно воздействующих на периферические железы. Расположен он в гипофизарной ямке турецкого седла клиновидной кости и через ножку связан с мозгом. Кровоснабжение осуществляется таким образом, что кровь проходит через срединное возвышение гипоталамуса, обогащается рилизинг-гормонами и попадает в аденогипофиз. Железистые клетки вырабатывают ряд пептидных гормонов, непосредственно регулирующих функцию периферических желез. В нем выделяют переднюю долю - аденогипофиз и заднюю - нейрогипофиз. Промежуточная (средняя) часть гипофиза состоит из крупных секреторноактивных базофильных клеток.

В передней доле вырабатываются адренокортикотропный (АКТГ), тиреотропный (ТТГ), лютеинизирующий (ЛГ) и фолликулостимулирующий (ФСГ), липотропный (ЛиГ), соматотропный (СТГ) гормоны и пролактин (ПРЛ). В промежуточной доле - меланоцитстимулирующий (МСГ), в задней - вазопрессин и окситоцин. Ранее все гормоны изучались по отдельности. Новые исследования механизма синтеза и внутриклеточных посредников их действия позволили объединить указанные гормоны в три общие группы: 1) гликопротеиновых гормонов; 2) пептидов семейства проопиомиелокортина и 3) группу, включающую гормон роста, пролактин и хорионический соматомам-мотропин.

Наиболее сложные из гормонов гипофиза - это гликопротеиновые гормоны (ТТГ, ЛГ, ФСГ). К этой группе относится также хорионический гонадотропин (ХГ) - гормон плаценты.

Все они многосторонне влияют на различные патологические процессы, но имеют структурное сходство. Они взаимодействуют с рецепторами клеточной поверхности и активируют адени-латциклазу, повышая уровень цАМФ, который и является их внутриклеточным медиатором. Все гормоны данной группы образовались на основе общего гена-предшественника, давшего две субъединицы: первую, определяющую межвидовые различия, и вторую, определяющую различие гормонов. Особенностью гликопротеиновых гормонов является гликозил ирование их молекул.

Молекулы гормонов синтезируются какпрепрогормоны, которые подвергаются в клетке дальнейшим изменениям с образованием глюкозилированных белков.

Гонад отропины (ФСГ, ЛГ, ХГ) обеспечивают гаметогенез и стероидогенез. ФСГ-фоллитропин связывается со специфическими мембранными рецепторами тканей-мишеней (фолликулярных клеток яичников и клеток Сертоли в семенниках).

После активации аденилатциклазы под влиянием ФСГ повышается уровень цАМФ. При этом активируется рост фолликулов, повышается их чувствительность к действию ЛГ, индуцирующему овуляцию, и усиливается секреция эстрогенов. Секретируется ФСГ циклически с пиком перед или во время овуляции (пик - 10-кратное увеличение базального уровня).

Лютеинизирующий гормон (лютропин, ЛГ) стимулирует образование прогестерона клетками желтых тел и тестостерона клетками Лейдига. Предварительно из холестерола образуется 2а-гидроксихолестерол. Длительное воздействие Л Г приводит к десенситизации рецепторов этого гормона, которые менее чувствительны по сравнению с рецепторами ФСГ.

Пик секреции ЛГ в середине цикла индуцирует овуляцию у женщин. Далее Л Г поддерживает функцию желтого тела и продукцию прогестерона. После оплодотворения и имплантации яйцеклетки функция ЛГ переходит к гормону плаценты - хорионическому гонад отропину (ХГ).

Первые 6-8 недель беременность поддерживается желтым телом, затем плацента сама вырабатывает прогестерон в количестве, необходимом для беременности, при сохранении продукции ХГ. В интерстициальных клетках негормональных тканей яичника ЛГ может индуцировать образование ряда андрогенов и их предшественников (андростендиона, дигидроэпиандростерона, тестостерона). По последним данным, считается, что при синдроме склерополикистоза яичников (синдром Штейна-Левенталя) отмечается повышенный уровень ЛГ, увеличение продуктов андрогенов, снижение фертильности, увеличение массы тела и усиленный рост волос на теле и лице.

Предполагается, что этот синдром обусловлен гиперактивностью яичниковой струмы.
Хорионический гонадотропин человека - это гликопротеин, синтезируемый клетками синцитиотрофобласта плаценты, похожий по структуре на Л Г. Особый рост уровня гормона отмечается после имплантации, поэтому его определение лежит в основе многих методов диагностики беременности.

Регулируется секреция ФСГ и ЛГ стероидными половыми гормонами по классической схеме отрицательной обратной связи. Высвобождение ЛГ и ФСГ определяется ГнРГ-гонадолиберином, а последнего - тестостероном, эстрадиолом и эндорфином.

Тиреотропный гормон (ТТТ, тиреотропин) - гликопротеин, который путем увеличения количества цАМФ обеспечивает биосинтез тиреоидных гормонов (Т3, Т4), концентрирование и органификацию иодида, конденсацию иодтиронинов и гидролиз тиреоглобулина. Эти процессы происходят в течение нескольких минут. Длительные эффекты ТТГ в щитовидной железе определяют синтез белков, фосфолипидов и нуклеиновых кислот, увеличение размеров и количества тиреоидных клеток (что связано с образованием Т, и Т4).

Секреция и высвобождение ТТГ в свою очередь регулируются тиреоидными гормонами (Т3 и Т4) и гипоталамическим тиролиберином.

Гормоны семейства пептидов-проопиомеланокортинов (ПОМК) представлены группой активных веществ, действующих либо как гормоны, либо как нейромедиаторы или нейромодуляторы. Пепти ды ПОМК делятся на три группы: 1) АКТГ, из которого могут образоваться меланоцитстимулирующий гормон (а-МСГ) и кортико-тропиноподобный пептид; 2) Р-липотропин ф-ЛПГ), служащий предшественником а-липотропина, р-МСГ, а-, (3-, у-эндорфинов; 3) у-МСГ.

ПОМК синтезируется в 50% клеток передней доли гипофиза и во всех клетках промежуточной, но регуляция этого процесса по долям различается. В передней доле высвобождение ПОМК регулируется кортиколиберином, а ингибируется - глюкокортикоидами, которые подавляют секрецию АКТГ. Кортиколиберин не влияет на промежуточную долю. Высвобождение ПОМК в промежуточной доле стимулируется серотонином и р-адренергическими агентами (агонистом дофамина - эргокриптином) и ингибируется антагонистом дофамина - галоперидолом.

В других тканях регуляция биосинтеза и высвобождения ПОМК изучена недостаточно. Не влияют на эти процессы глюкокортикоиды, кортиколиберин, адреналоэктомия и гипофизэктомия. Стресс уменьшает выработку р-эндорфина в гипоталамусе, а эстрогены увеличивают высвобождение р-эндорфина из гипоталамуса.

Адренокортикотропный гормон (АКТГ) - полипептид, регулирующий рост и функцию коры надпочечников. Он имеет межвидовое тождество. В частности, из 39 аминокислот пептиды 24 у разных видов тождественны, что широко используется для диагностики и лечения. АКТГ повышает синтез и секрецию стероидов надпочечников, усиливая превращение холестерола в прегненолон (предшественник всех стероидов надпочечников). Длительное применение АКТГ приводит к избыточному образованию глюкокортикоидов, минерал окортикоидов и дегидроэпиадрестерона - предшественника андрогенов. Проявляя трофический эффект, АКТГ повышает синтез белка и РНК

Это происходит благодаря увеличению уровня цАМФ после контакта АКТГ с рецепторами плазматических мембран, что приводит к активации аденилатциклазы. В жировых клетках АКТГ активирует липазу и усиливает гликолиз, что осуществляется с участием кальция. В больших дозах АКТГ стимулирует также секрецию инсулина в поджелудочной железе. Регуляция образования АКТГ из белка - предшественника ПОМК и его секреции осуществляется по принципу обратной связи глюкокортикоидами и кортиколиберином. Интегрирующая роль при этом выполняется центральной нервной системой с помощью нейромедиаторов (норадреналин, серотонин, ацетилхолин). Именно они опосредуют стрессорную реакцию со стороны АКТГ по стимуляции глюкокортикоидов, необходимых для адаптации таких воздействий, как хирургическая операция, гипогликемия, физическая или эмоциональная травма, эффекты холода и пирогенов.

Эндорфины-пептиды содержатся в гипофизе в ацетилированной (неактивной) форме. В центральной нервной системе они присутствуют в немодифицированной (активной) форме и выступают как нейромодуляторы или нейрорегуляторы. Связываются они с теми же рецепторами, что и морфиновые опиаты.

Меланоцитстимулирующий гормон (МСГ) активирует меланогенез. Три разновидности МСГ содержатся в составе ПОМК При низком уровне глюкокортикоидов (болезнь Аддисона) отмечается усиленная пигментация кожи, что связано с повышенной активностью МСГ в плазме, хотя после рождения у людей МСГ не обнаружен.

Группа гормонов - гормон роста (ГР) , пролактин (ПРЛ), хорионический соматомаммотропин и плацентарный лактоген (ХС, ПЛ) гомологичны по своей структуре. ГР и ХС человека гомологичны на 8 5%, ГР и ПРЛ - на 3 5%. Они объединяются также лактогенной и ростстимулирующей активностью.

Продуцируются только определенными тканями: ГР и ПРЛ - передней долей гипофиза, ХС - синтициотрофобластными клетками плаценты. Секретируются по собственному регуляторному механизму. Есть несколько генов в хромосоме 17 для ГР и ПС и один для ПРЛ в хромосоме 6.
Систему регуляции роста представляют основные звенья - соматолиберин и соматостатин, а также инсулиноподобный фактор роста (ИФР-1), который образуется в печени. ИФР-1 регулирует секрецию ГР, подавляя высвобождение соматолиберина и стимулируя высвобождение соматостатина. ГР необходим для постнатального роста и для нормализации углеводного, липидного, азотного и минерального обменов. ГР стимулирует транспорт аминокислот в мышечные клетки, синтез белка и снижает содержание аминокислот и мочевины в плазме и моче. Все это сопровождается повышением уровня синтеза РНК и ДНК в отдельных тканях. На углеводный обмен ГР влияет противоположно инсулину. При длительном введении ГР существует опасность возникновения сахарного диабета. ГР влияет на минеральный обмен, стимулируя рост костей и образование хряща.

Этот гормон обладает и свойствами ПРЛ, способствует развитию молочных желез, л актогенезу.

Пролактин (ПРЛ) лактогенный гормон, маммотропин и лютеотропный гормон) секретируется лактофорами - ацидофильными клетками передней доли гипофиза. Продукция ПРЛ находится под контролем пролактостатина, который по структуре подобен дофамину. Некоторые считают, что дофамин и есть пролактинин-гибирующий фактор (ПИФ). Сомнительным считается наличие пролактолиберина. Возрастает уровень ПРЛ во время беременности, при стрессе, сексуальных контактах и во время сна, гормон способствует инициации и поддержанию лактации.

Хорионический соматомаммотропин (ХС: плацентарный лактоген) проявляет л актогенную и лютеотропную активность, а по метаболическим эффектам сходен с ГР. ХС поддерживает рост и развитие плода. Синтезируется клетками синцитиотрофобласта, но в эту группу относится по сходству структуры и характера действия с ПРЛ и ГР.

Задняя доля гипофиза содержит два активных гормона - вазопрессин и окситоцин. Вазопрессин (иначе антидиуретический гормон - АДГ) способен повышать артериальное давление, стимулирует реабсорбцию воды в дистальных почечных канальцах. Специфическим эффектом второго гормона - окситоцина является ускорение родов из-за усиления сокращений мышц матки. Оба гормона образуются в гипоталамусе, затем с аксонплазматическим током переносятся в нервные окончания задней доли гипофиза, из которых секретируются в кровоток при соответствующей стимуляции, минуя гематоэнцефалический барьер. АДГ синтезируется преимущественно в супраоптическом ядре, окситоцин - в паравентрикулярном ядре. Оба переносятся со специфическим белком-переносчиком - нейрофизином I и II типа. Оба гормона имеют короткий период полужизни (2- 4 мин). Метаболизм их осуществляется в печени. При многих факторах, способствующих выделению окситоцина, высвобождается пролактин, поэтому окситоцин считается пролактинрилизинг-фактором.

Главный эффект АДГ - повышение осмоляльности плазмы, что опосредуется осморецепторами в гипоталамусе к барорецепторам в сердечно-сосудистой системе. Выделение АДГ регулируется многими факторами (гемодилюцией, эмоциональным и физическим стрессом, уровнем АД).

Адреналин, как и этанол, подавляет секрецию АДГ. Органом-мишенью для АДГ являются почки (клетки дистальных извитых канальцев и собирательных трубочек почек).

Основным физиологическим и фармакологическим свойством окситоцина является способность вызывать сокращения гладкой мускулатуры небеременной, беременной матки и особенно во время родов. Увеличение частоты, интенсивности и длительности сокращений связывается со снижением мембранного потенциала клеток Эффективность дозы гормона определяется функциональным состоянием матки (небеременная, беременная в разные сроки). В последние 4 недели беременности чувствительность матки к окситоцину многократно возрастает, хотя и отмечаются индивидуальные различия. Окситоцин обладает и вторым свойством - способностью вызывать сокращения миоэпителиальных элементов альвеол мелких протоков молочной железы, т.е. способствует процессу лактации, улучшая продвижение в крупные протоки и молочные синусы молока, секретируемого под воздействием пролактина.

Заболевания, связанные с патологией гипоталамо-гипофизарной системы, самые многочисленные в эндокринологии и специфичны по каждому гормону. Недостаточность или отсутствие ГР, обусловленные пангипопитуитаризмом, особенно опасны у детей, так как нарушают их способность к нормальному росту и приводят к различным видам карликовости. Избыток же этого гормона приводит к развитию гигантизма, а у взрослых - к акромегалии.

Низкий уровень глюкокортикоидов приводит к развитию болезни Аддисона. Избыточное же образование АКТГ гипофизом или его эктопическая продукция проявляются синдромом Иценко-Кушинга со множеством метаболических нарушений: отрицательный азотный, калиевый и фосфорный баланс; задержка натрия, нередко сопровождающаяся повышением АД и развитием отеков; нарушение толерантности к глюкозе или сахарный диабет; повышение уровня жирных кислот в плазме; эозинопения, лимфоцитопения с увеличением количества полиморфно-ядерных лейкоцитов. Отсутствие АКТГ при опухоли или инфекции гипофиза вызывает противоположные состояния.

Длительное повышение секреции ПРЛ приводит к развитию синдрома персистирующей галактореи-аменореи. Это может быть и при нормальном уровне ПРЛ в сыворотке крови при чрезмерно высокой его биологической активности. У мужчин гиперсекреция ПРЛ сопровождается развитием импотенции, гинекомастии с галактореей. Хроническая гиперпродукция ПРЛ может быть основным патогенетическим звеном самостоятельного гипоталамо-гипофизарного заболевания, а также следствием ряда эндокринных и неэндокринных заболеваний с вторичным вовлечением в процесс гипоталамо-гипофизарной системы.

Нарушение секреции или действия АДГ приводят к несахарному диабету с выделением больших объемов разведенной мочи. При наследственном нефрогенном несахарном диабете уровень АДГ может быть нормальным, но клетки мишени не реагируют на него. Синдром избыточной секреции АДГ развивается при эктопическом образовании гормона различными опухолями (чаще опухоли легких) и сопровождается задержкой мочеотделения в условиях гипоосмоляльности при устойчивой и прогрессирующей гипонатриемии и повышенном содержании натрия в моче.

Синдром «пустого турецкого седла» (ПТС) определяет различные нозологические формы, общим признаком которых является расширение субарахноидального пространства в интерселлярную область при увеличенном турецком седле. Синдром ПТС может развиваться вторично после оперативных вмешательств и первично без таковых. Синдром может протекать бессимптомно (случайные находки) или с разнообразными клиническими проявлениями (головные боли, нарушение зрения, гиперпролактинемия и др.).

Патология гипоталамо-гипофизарной области приводит также к различным гинекологическим заболеваниям (аменорея, нейроэндокринные синдромы). Так, при пангипопитуитаризме может развиться синдром Шихена, когда при отсутствии гипо-физарного уровня регуляции нарушается функция всех периферических эндокринных желез, или болезнь Симмондса - синдром гипоталамо-гипофизарной кахексии.

Для того, чтобы регуляция функциональности внутренних органов была нормальной, необходимо, чтобы в нормальном порядке осуществлялась гормональная выработка. И здесь очень большое значение имеет человеческий гипофиз, который напрямую влияет на процесс выработки таких компонентов, которые просто незаменимы для нормального функционирования организма человека. При этом интересно, что гормональное число, которое нужно для нормальной жизнедеятельности организма носит неодинаковый характер, здесь все напрямую зависит от того, на какой стадии находится развитие человеческого тела. Гипофизарная недостаточность может стать причиной самых разных патологий, так что выявлять и лечить нужно своевременно.

Если женщина находится в состоянии беременности, организм человека переживает стадию интенсивного роста, совершается половой акт, то гипофизная работа в значительной степени становится быстрее, а потом должна быть стабилизирована питуитарная железа. Чтобы этого достичь, в работу вступает комплекс нейроэндокринного типа, в такой комплекс входит непосредственно гипофиз и гипоталамус. И вот такая объединенная система отвечает за множество самых разных функций, которые несут прямую ответственность за то, чтобы функции тела человека вегетативного типа были успешно регулируемыми.

Секреторный комплекс нейроэндокринного типа — это высший регулятор всей деятельности организма человека. Для того, чтобы держать функциональность человеческого тела под полным контролем, задействуются определенные отделы головного мозга (которые относятся к нижним). Таким образом начинается сотрудничество гипоталамуса и гипофиза, что становится причиной необходимой гормональной выработки. Причем, определенный участок держит под своим контролем определенные внутренние органы. Понятно, почему гипофизарная недостаточность настолько важна для нормальной деятельности организма.

Как уже было сказано, гипоталамус совместно с гипофизом осуществляет выработку гормонального числа, которое нужно. Примечательно, что необходимые сигналы могут передаваться только через тонкую кожу, которая соединят мозг и железу питуитарного типа.

Каждая часть такого универсального комплекса отличается своей структурой, которая имеет определенного рода особенности:

  • гипофиз представляет собой придаток нижней мозговой части, которая находится в районе турецкого седла, то есть он располагается в гипофизарной ямке, именно он — центральной орган всей системы эндокринного типа. А на то, как работает щитовидная железа, напрямую влияет железа питуитарного типа. Так что, если имеется гипофизарная недостаточность, то возникают проблемы с щитовидной железой, на которую влияют гипофизарные гормоны. Её структура включает две крупные части, между которыми имеется отдел промежуточного типа. Он находится пониже, чем гипоталамус;
  • если говорить о гипоталамусе, то гипоталомус представляет собой определенную часть отдела в промежуточном мозге. Его месторасположение повыше гипофиза, но ниже таламуса, весит такой отдел не больше 5 гр, примечательно, что орган не имеет четко очерченных границ. Если говорить о его функциях, то это контроль и управление функции вегетативного типа. Здесь имеется всего 3 отдела, речь идет о латеральном отделе, медиальном перивентрикулярным;
  • между таким отделами есть расположение соединительной части, такая зона называется ножка или ещё используется название подъем.

Очень большое значение имеет гипоталамо гипофизарно надпочечниковая человеческая система. Дело в том, что если гипоталамо гипофизарно надпочечниковая человеческая система работает в ненормальном режиме, то могут быть как нервные нарушения, так как гипоталамо гипофизарно надпочечниковая органическая система отвечает за нервы, так и возникают недуги эндокринного характера, так как гипоталамо гипофизарно надпочечниковая человеческая система контролирует и эту сферу.

Все строение и функциональность такой системы носит исключительно взаимосвязанный характер, при этом посредством гипоталамуса осуществляется выработка как гормонов, которые стимулируют развитие, так и гормонов угнетающего типа. Учитывая то, что мозговой отдел в тесном порядке сотрудничает с придатком, если возникает необходимость, то можно простимулировать ускоренный выброс либо пролактина либо иных веществ, которые нужны для нормального прохождения цикла взросления. Также, здесь речь идет о том, чтобы регуляция цикла менструации у женщин была нормальной, имеет значение для нормальной половой деятельности человека.

Каковы функции системы

Как уже было отмечено такой комплекс полностью держит под контролем системы вегетативного типа человеческого организма. Причем, каждый комплексный отдел отвечает за выработку определенного типа гормонов, которые оказывают непосредственное влияние на определенные внутренние органы:

  • если говорить о гипоталамусе, то именно он способен поддерживать нормальную функциональность определенных внутренних органов, отвечает за нормальную температуру тела, регулирует системы половую и эндокринную, следит за работой щитовидной железы (также в сферу его влияния входит и поджелудочная железа и надпочечники), а также и сам гипофиз. Если гипоталамо гипофизарная органическая система подвергается нарушениям, то перестают нормально работать многие органы;
  • если говорить о гипофизе, то он осуществляет выработку гормонов тропного типа, а также в полной мере регулирует деятельность эндокринных желез переферического типа. Также, под его контролем осуществляется стимуляция процесса синтезирования тестостерона, провоцируется соответствующий объем выработки сперматозоидов, ростовых гормонов, а также в нормальном режиме работает щитовидная железа, так что по гипофизу осуществляется важнейшая ориентировка.

Если все нормально, то для нормальной работы человеческого организма осуществляется выработка достаточного числа гормонов. Если такая функция нарушается, то есть носит гиперактивный или недостаточный характер, то могут возникнуть серьезные сбои в деятельности человеческого организма.

Физиологические особенности системы

Гормона такой системы оказывают непосредственное влияние на весь комплекс важнейших функций организма человека, такой комплекс представляет собой единый хорошо слаженный механизм, поэтому, пока все нормально, все функции не имеют сбоев. Именно с его помощью осуществляется анализ гормонального количества в организме, таким образом подаются сигналы, которые побуждают либо увеличивать либо уменьшать количество вырабатываемых гормонов.

Однако, если у человека начинают развиваться образования опухолевого типа, такие как аденома или киста, то нарушается обмен веществ, что приводит к дисфункции такой уникальной системы. Когда наблюдаются подобные сбои, то нарушениям подвергаются половая, эндокринная и мочеполовая системы человека, также могут подвергнуться определенным нарушениям и иные системы. Часто речь может идти о дисфункции полового типа, что может привести к бесплодию и ослаблению иммунной системы. Для того, чтобы вылечить такие патологии, надо, прежде всего, устранить их причины, потом уже восстанавливать утраченные функции.

Какое значение имеет система

Если функции этой важнейшей системы подвергаются любым нарушениям, то это становится причиной самых тяжелых последствий. Если гормоны роста начинают вырабатываться в усиленном режиме, то дело может закончиться развитием гигантизма, если дело касается ненормальной выработки пролактина, то серьезным нарушениям подвергается система репродуктивного характера. Так что, необходимо прилагать все усилия для того, чтобы гипоталамо гипофизарная серьезная дисфункция не наступила. Гипоталамо аденогипофизарная уникальная система курирует выработку тропных гормонов, которые для нормальной деятельности организма незаменимы.

Секреция уменьшенного типа становится причиной развития карликовости, ослабления иммунной системы, возникновения диабета не сахарной формы и иных патологий. Если у человека наблюдается гипоталамо гипофизарная острая недостаточность, то могут возникнуть патологии, многие из которых могут иметь необратимый характер. Гипоталамо гипофизарная сильная недостаточность часто приводит к тому, что эндокринная система просто не может функционировать в нормальном режиме.

Расстройства, вызванные дефицитом определенных гормонов могут быть такими, что сначала последствий не видно, но потом они начнут себя проявлять весьма интенсивно, что спровоцирует многие болезни.

Для негативных изменений гормональной картины порой достаточно самых незначительных факторов, часто гипоталамические нарушения носят наследственный характер. Особенно, когда речь идет о таком диагнозе, как карликовость и гигантизм.

Восстановительный процесс

Этиология всех нарушений имеет непосредственную связь с развитием новообразований, синдромов дистрофического характера. Не редко речь идет об изменениях в строении определенной части комплекса нейроэндокринного типа.

Прежде чем лечить такие патологии, необходимо провести диагностические процедуры, чтобы выявить причины сбоя работы системы. Так, гипоталамо гипофизарная острая недостаточность может быть выявлена целым рядом определенных процедур. Так что больной должен быть подвергнут всестороннему обследованию, при этом имеют место такие процедуры:

  • магнитно-резонансная томография;
  • берутся анализы клинического типа и проводятся гормональные тесты.

После того, как диагностические процедуры завершены, начинает курс терапии гормонозаменяющего и стимулирующего характера. Если имеют место образования опухолевого типа, то они должны удаляться путем эндоскопии. В подавляющем большинстве случаев, когда катализиторы нарушений ликвидированы, состояние начинает постепенно нормализироваться, а утраченные функции подвергаются восстановлению.

Очень важно ещё раз сказать о том, что какой бы не была патология, гипоталамо гипофизарная сильная недостаточность или иная патология гипоталамо гипофизарной уникальной системы человека, все заболевания гипоталамо гипофизарной уникальной системы должны лечиться не только своевременно, но и адекватно.

Если этого не сделать, то нарушение функций гипоталамо гипофизарной уникальной системы могут стать причиной инвалидности человека, а могут возникнуть и более серьезные негативные последствия для человека.

В основном, регуляция внутри эндокринной системы осуществляется посредством гормональных и нейрогормональных механизмов. Высшим центром нейрогормонального управления, который осуществляет переключение регуляции с нервной системы на эндокринную, является гипоталамо-гипофизарная система . Она включает в себя гипоталамус – один из отделов промежуточного мозга и гипофиз – эндокринную железу, которая локализуется в головном мозге.

В гипоталамо-гипофизарном структурно-функциональном объединении различают две относительно самостоятельные системы. Первая система состоит из супраоптическогоипаравентрикулярного ядер гипоталамуса, которые связаны с гипофизом гипоталамо-гипофизарным нервным трактом .

Вторая система состоит из гипофизотропной зоны гипоталамуса, которая связана с гипофизом венозной сосудистой сетью . В гипофизотропной зоне гипоталамуса синтезируются нейрогормоны, которые называют рилизинг-факторами .

Нейрогормон - это специфические биологически активные вещества, которые вырабатываются нервными клетками и оказывают регулирующее влияние на функции клеток-мишеней вдали от места своего образования.

Через воротную венозную сосудистую сеть нейрогормоны поступают в гипофиз, где оказывают регулирующее влияние на его гормонообразовательную функцию.

Выделяют две группы рилизинг-факторов: либерины и статины .

Либерины стимулируют синтез и секрецию гормонов гипофиза. К ним относятся:

1) кортиколиберин,

2) тиролиберин,

3) гонадолиберины - люлиберин (рилизинг-фактор лютеинизирующего гормона) и фолиберин (рилизинг-фактор фолликулостимулирующего гормона),

4) соматолиберин,

5) пролактолиберин,

6) меланолиберин.

Статины угнетают образование и выделение гормонов гипофиза. К ним относятся:

1) соматостатин,

2) меланостатин,

3) пролактостатин.

Нейрогормональная регуляция гормонообразовательной функции осуществляется автоматически по кибернетическому принципу обратной связи. При избытке эффекторного гормона в крови тормозится синтез и выделение либеринов, а статинов - активируется. В случае недостатка эффекторного гормона, наоборот, инкреция активаторов увеличивается, а ингибиторов – снижается.

Анатомически в гипофизе выделяют переднюю, среднюю (промежуточную) и заднюю доли. Промежуточная доля гипофиза у человека слабо выражена. Вместе с передней долей они функционально объединяются в аденогипофиз.

В передней доле гипофиза синтезируется две группы гормонов белково-пептидной природы - тропные и эффекторные.

Тропные гормоны передней доли гипофиза – тиротропный (тиротропин), адренокортикотропный (кортикотропин) и гонадотропные (гонадотропины), регулируют секреторную функцию других эндокринных желез.


Тиротропныйгормон (ТТГ) стимулирует деятельность щитовидной железы. Адренокортикотропныйгормон (АКТГ) стимулирует деятельность коры надпочечников.

К гонадотропинам , которые обеспечивают репродуктивные процессы, относятся лютеинизирующий и фолликулостимулирующий гормоны.

Лютеинизирующийгормон (ЛГ) является ключевым для выработки мужских и женских половых гормонов. У женщин он также стимулирует овуляцию – выход женских половых клеток (яйцеклеток) из яичника. Фолликулостимулирующийгормон (ФСГ) у мужчин стимулирует разрастание сперматогенного эпителия и активирует сперматогенез. У женщин ФСГ стимулирует рост и развитие фолликулов яичников.

Физиологические эффекты гонадотропинов связаны с их стимулирующим действием на половые железы. Поэтому при поражении аденогипофиза наблюдается атрофия половых желез.

Эффекторныегормоны передней доли гипофиза – соматотропный (соматотропин , гормон роста ), пролактин и липотропины , непосредственно влияют на исполнительные органы (эффекторные органы) и клетки-мишени.

Соматотропный гормон (СТГ):

1) стимулирует развитие мягких тканей организма, а также линейный рост трубчатых костей,

2) оказывает прямое анаболическое влияние на белковый обмен (стимулирует транспорт аминокислот в клетки, а также биосинтез белка из аминокислот),

3) в физиологических концентрациях повышает уровень глюкозы в крови,

4) стимулирует липолиз (расщепление жиров) и мобилизацию жира из депо.

Избыточное образование и выделение СТГ у детей приводит к развитию гигантизма, который проявляется в пропорциональном увеличении размеров тела. У взрослых избыток СТГ приводит к акромегалии - неравномерному разрастанию костей скелета, а также к спланхомегалии - разрастанию внутренних органов.

Недостаточная внутренняя секреция СТГ у детей вызывает гипофизарный нанизм (карликовость), который проявляется в задержке физического, а также полового развития.

Основной физиологический эффект пролактина у мужчин - стимуляция деятельности простаты и семенников. У женщин он стимулирует образование молока грудными железами во время лактации,

Основным физиологическим эффектом липотропинов является прямое жиромобилизующее и липолитическое действие.

В промежуточной доле гипофиза продуцируется эффекторный меланоцитстимулирующий гормон (МСГ, меланотропин). Основной физиологический эффект МСГ - активация пигментного обмена в клетках.

У человека меланотропин вырабатывается в небольших количествах и, поэтому, не играет существенной роли в пигментном обмене. Его значение возрастает у животных, покрытых шерстью, а также у существ, способных изменять окраску покровов тела (хамелеон, осьминог, некоторые виды рыб).

Клетки задней доли гипофиза (нейрогипофиз) не синтезируют гормоны. Они выполняют функцию депо окситоцина и вазопрессина, которые продуцируются нейронами супраоптического и паравентрикулярного ядер гипоталамуса.

окситоцина :

1) стимулирует сокращение гладкой мускулатуры матки,

2) стимулирует сокращение миоэпителиальных клеток грудных желез, повышая выделение молока во время кормления грудного ребенка.

Поступление окситоцина в кровь увеличивается при беременности, особенно перед родами, и в период лактации.

Основные физиологические эффекты вазопрессина (антидиуретический гормон, АДГ):

1) в больших концентрациях повышает артериальное давление за счет сокращения гладкой мускулатуры артериол,

2) уменьшает выделение мочи (диурез) за счет снижения реабсорбции воды в почках.

Синтез АДГ в гипоталамусе и выделение его из задней доли гипофиза возрастает:

1) при гиповолемии - уменьшении объема циркулирующей крови,

2) при гиперосмии – увеличении осмотического давления плазмы крови,

3) при переживании боли, повышении психоэмоционального напряжения и стрессах.