Электронная проводимость металлов. Электронная проводимость металлов — Гипермаркет знаний

Электрическая проводимость характеризует способность тела проводить электрический ток. Проводимость — величина обтаная сопротивлению . В формуле она обратно пропорциональна электрическому сопротивлению, и используются они фактически для обозначения одних и тех же свойств материала. Измеряется проводимость в Сименсах : [См]=.

Виды электропроводимости:

Электронная проводимость , где переносчиками зарядов являются электроны. Такая проводимость характерна в первую очередь для металлов, но присутствует в той или иной степени практически в любых материалах. С увеличением температуры электронная проводимость снижается.

Ионная проводимость . Существует в газообразных и жидких средах, где имеются свободные ионы, которые также переносят заряды, перемещаясь по объёму среды под действием электромагнитного поля или другого внешнего воздействия. Используется в электролитах. С ростом температуры ионная проводимость увеличивается, поскольку образуется большее количество ионов с высокой энергией, а также снижается вязкость среды.

Дырочная проводимость . Эта проводимость обуславливается недостатком электронов в кристаллической решётке материала. Фактически, переносят заряд здесь опять же электроны, но они как бы движутся по решётке, занимая последовательно свободные места в ней, в отличии от физического перемещения электронов в металлах. Такой принцип используется в полупроводниках, наряду с электронной проводимостью.


Самыми первыми материалами, которые стали использоваться в электротехнике исторически были металлы и диэлектрики (изоляторы, которым присуща маленькая электрическая проводимость). Сейчас получили широкое применение в электронике полупроводники. Они занимают промежуточное положение между проводниками и диэлектриками и характеризуются тем, что величину электрической проводимости в полупроводниках можно регулировать различным воздействием. Для производства большинства современных проводников используются кремний, германий и углерод. Кроме того, для изготовления ПП могут использоваться другие вещества, но они применяются гораздо реже.

В важное значение имеет передача тока с минимальными потерями. В этом отношении важную роль играют металлы с большой электропроводностью и, соответственно, маленьким электросопротивлением. Самым лучшим в этом отношении является серебро (62500000 См/м), далее следуют медь (58100000 См/м), золото (45500000 См/м), алюминий (37000000 См/м). В соответствии с экономической целесообразностью чаще всего используются алюминий и медь, при этом медь по проводимости совсем немного уступает серебру. Все остальные металлы не имеют промышленного значения для производства проводников.

Электронная проводимость металлов

В начале XX века была создана классическая электронная теория проводимости металлов (П. Друде, 1900 г., Х.Лоренц, 1904 г.), которая дала простое и наглядное объяснение большинства электрических и тепловых свойств металлов. Рассмотрим некоторые положения этой теории.

Свободные электроны

Металлический проводник состоит из:

1) положительно заряженных ионов, колеблющихся около положения равновесия, и

2) свободных электронов, способных перемещаться по всему объему проводника.

Таким образом, электрические свойства металлов обусловлены наличием в них свободных электронов с концентрацией порядка 1028 м–3, что примерно соответствует концентрации атомов. Эти электроны называются электронами проводимости. Они образуются путем отрыва от атомов металлов их валентных электронов. Такие электроны не принадлежат какому-то определенному атому и способны перемещаться по всему объему тела. В металле в отсутствие электрического поля электроны проводимости хаотически движутся и сталкиваются, чаще всего с ионами кристаллической решетки (рис. 1). Совокупность этих электронов можно приближенно рассматривать как некий электронный газ, подчиняющийся законам идеального газа. Средняя скорость теплового движения электронов при комнатной температуре составляет примерно 105 м/с.

Рисунок 1

Электрический ток в металлах

Ионы кристаллической решетки металла не принимают участие в создании тока. Их перемещение при прохождении тока означало бы перенос вещества вдоль проводника, что не наблюдается. Например, в опытах Э. Рикке (1901 г.) масса и химический состав проводника не изменялся при прохождении тока в течении года.

Экспериментальное доказательство того, что ток в металлах создается свободными электронами, было дано в опытах Л.И. Мандельштама и Н. Д. Папалекси (1912 г., результаты не были опубликованы), а также Т. Стюарта и Р. Толмена (1916 г.). Они обнаружили, что при резкой остановке быстро вращающейся катушки в проводнике катушки возникает электрический ток, создаваемый отрицательно заряженными частицами - электронами.

Следовательно, электрический ток в металлах - это направленное движением свободных электронов.

Так как электрический ток в металлах образуют свободные электроны, то проводимость металлических проводников называется электронной проводимостью.

Электрический ток в металлах возникает под действием внешнего электрического поля. На электроны проводимости, находящиеся в этом поле, действует электрическая сила, сообщающая им ускорение, направленное в сторону, противоположную вектору напряженности поля. В результате электроны приобретают некоторую добавочную скорость (ее называют дрейфовой). Эта скорость возрастает до тех пор, пока электрон не столкнется с атомом кристаллической решетки металла. При таких столкновениях электроны теряют свою избыточную кинетическую энергию, передавая ее ионам. Затем электроны снова разгоняются электрическим полем, снова тормозятся ионами и т.д.Средняя скорость дрейфа электронов очень мала, около 10–4 м/с.

Скорость распространения тока и скорость дрейфа не одно и то же. Скорость распространения тока равна скорости распространения электрического поля в пространстве, т.е. 3⋅108 м/с.

При столкновении с ионами электроны проводимости передают часть кинетической энергии ионам, что приводит к увеличению энергии движения ионов кристаллической решетки, а, следовательно, и к нагреванию проводника.

Сопротивление металлов

Сопротивление металлов объясняется столкновениями электронов проводимости с ионами кристаллической решетки. При этом, очевидно, чем чаще происходят такие столкновения, т. е. чем меньше среднее время свободного пробега электрона между столкновениями τ, тем больше удельное сопротивление металла.

В свою очередь, время τ зависит от расстояния между ионами решетки, амплитуды их колебаний, характера взаимодействия электронов с ионами и скорости теплового движения электронов. С ростом температуры металла амплитуда колебаний ионов и скорость теплового движения электронов увеличиваются. Возрастает и число дефектов кристаллической решетки. Все это приводит к тому, что при увеличении температуры металла столкновения электронов с ионами будут происходить чаще, т.е. время τ уменьшается, а удельное сопротивление металла увеличивается.

Опыт Мандельштама и Папалекси по выяснению движения электрона

Если электрон обладает массой, то его масса, или способность двигаться по инерции, должна проявляться повсюду, а не только в электрическом поле. Русские ученые Л. И. Мандельштам (1879-1949; основатель школы радиофизиков) и Н. Д. Папалекси (1880 - 1947; крупнейший советский физик, академик, председатель Всесоюзного научного совета по радиофизике и радиотехнике при АН СССР) в 1913 году поставили оригинальный опыт. Взяли катушку с проводом и стали крутить ее в разные стороны.

Раскрутят, к примеру, по часовой стрелке, потом резко остановят и - назад.

Рассуждали они примерно так: если электроны и вправду обладают массой, то, когда катушка внезапно останавливается, электроны еще некоторое время должны двигаться по инерции. Движение электронов по проводу - электрический ток. Как задумали, так и получилось. Подсоединили к концам провода телефон и услышали звук. Раз в телефоне слышен звук, следовательно, через него ток протекает.

Опыт Мандельштама и Папалекси в 1916 году повторили американские ученые Толмен и Стюарт. Они тоже крутили катушку, но вместо телефона к ее концам подсоединили прибор для измерения заряда. Им удалось не только доказать существование у электрона массы, но и измерить ее. Данные Толмена и Стюарта потом много раз проверялись и уточнялись другими учеными, и теперь вы знаете, что масса электрона равна 9,109 Ю-31 килограмма.

При постановке этих опытов исходили из следующей мысли. Если в металле есть свободные заряды, обладающие массой, то они должны подчиняться закону инерции, Быстро движущийся, например, слева направо проводник представляет собой совокупность движущихся в этом направлении атомов металла, которые увлекают вместе с собой и свободные заряды. Когда такой проводник внезапно останавливается, то останавливаются входящие в его состав атомы; свободные же заряды по инерции должны продолжать движение слева направо, пока различные помехи (соударения с остановившимися атомами) не остановят их. Происходящее явление подобно тому, что наблюдается при внезапной остановке трамвая, когда «свободные», не прикрепленные к вагону предметы и люди по инерции некоторое время продолжают двигаться вперед.

Таким образом, краткое время после остановки проводника свободные заряды в нем должны двигаться в одну сторону. Но движение зарядов в определенную сторону есть электрический ток. Следовательно, если наши рассуждения справедливы, то после внезапной остановки проводника надо ожидать появления в нем кратковременного тока. Направление этого тока позволит судить о знаке. Заряда. Если же в этом направлении будут двигаться отрицательные заряды, то должен наблюдаться ток, имеющий направление справа налево и наоборот. Возникающий ток зависит от зарядов и способности их носителей более или менее долго сохранять по инерции свое движение, несмотря на помехи, т. е. от их массы. Таким образом, этот опыт не только позволяет проверить предположение о существовании в металле свободных зарядов, но и определить сами заряды, их знак и массу их носителей (точнее, отношение заряда к массе elm).

В практическом осуществлении опыта оказалось более удобным использовать не поступательное, а вращательное движение проводника. Схема такого опыта приведена на рис.2.

Рисунок 2

На катушке, в которую вделаны две изолированные друг от друга полуоси 00, укреплена проволочная спираль 1. Концы спирали припаяны к обеим половинам оси и при помощи скользящих контактов 2 («щеток») присоединены к чувствительному гальванометру 3. Катушка приводилась в быстрое вращение и затем внезапно тормозилась. Опыт действительно обнаружил, что при этом в гальванометре возникал электрический ток. Направление этого тока показало, что по инерции движутся отрицательные заряды. Измерив заряд, переносимый этим кратковременным током, можно было найти отношение свободного заряда к массе его носителя. Отношение это оказалось равным e/m=l,8 1011 Кл/кг, что хорошо совпадает со значением такого отношения для электронов, определенным другими способами.

ЭЛЕКТРОПРОВОДНОСТЬ МЕТАЛЛОВ И ПОЛУПРОВОДНИКОВ

Электропроводность металлов

Соответствующий квантовомеханический расчет дает, что в случае идеальной кристаллической решетки электроны проводимости не испытывали бы при своем движении никакого сопротивления и электропроводность металлов была бы бесконечно большой. Однако кристаллическая решетка никогда не бывает совершенной. Нарушения строгой периодичности решетки бывают обусловлены наличием примесей или вакансий (т.е. отсутствие атомов в узле), а также тепловыми колебаниями в решетке. Рассеяние электронов на атомах примеси и на фотонах приводит к возникновению электросопроти-вления металлов. Чем чище металл и ниже температура, тем меньше это сопротивление.

Удельное электрическое сопротивление металлов можно представить в виде

где кол - сопротивление, обусловленное тепловыми колебаниями решетки, прим - сопротивление, обусловленное рассеянием электронов на примесных атомах. Слагаемое кол уменьшается с понижением температуры и обращается в нуль при T = 0K . Слагаемое прим при небольшой концентрации примесей не зависит от температуры и образует так называемое остаточное сопротивление металла (т.е. сопротивление, которым металл обладает при 0K).

Пусть в единице объема металла имеется n свободных электронов. Назовем среднюю скорость этих электронов дрейфовой скоростью . По определению

В отсутствие внешнего поля дрейфовая скорость равна нулю, и электрический ток в металле отсутствует. При наложении на металл внешнего электрического поля дрейфовая скорость становится отличной от нуля - в металле возникает электрический ток. Согласно закону Ома дрейфовая скорость является конечной и пропорциональной силе
.

Из механики известно, что скорость установившегося движения оказывается пропорциональной приложенной к телу внешней силе F в том случае, когда, кроме силы - F , на тело действует сила сопротивления среды, которая пропорциональна скорости тела (примером может служить падение маленького шарика в вязкой среде). Отсюда заключаем, что кроме силы
, на электроны проводимости в металле действует сила "трения", среднее значение которой равно

(r -коэффициент пропорциональности).

Уравнение движения для "среднего" электрона имеет вид

,

где m * - эффективная масса электрона. Это уравнение позволяет найти установившееся значение .

Если после установления стационарного состояния выключить внешнее поле , дрейфовая скорость начнет убывать и по достижении состояния равновесия между электронами и решеткой обращается в нуль. Найдем закон убывания дрейфовой скорости после выключения внешнего поля. Положив в
, получим уравнение

Уравнение такого вида нам хорошо знакомо. Его решение имеет вид

,

где
-значение дрейфовой скорости в момент выключения поля.

Из следует, что за время

значение дрейфовой скорости уменьшается в e раз. Таким образом, величина представляет собой время релаксации, характеризующее процесс установления равновесия между электронами и решеткой, нарушенного действием внешнего поля .

С учетом формула может быть написана следующим образом:

.

Установившееся значение дрейфовой скорости можно найти, приравняв нулю сумму силы
и силы трения:

.

.

Установившееся значение плотности тока получим, умножив это значение на заряд электрона -e и плотность электронов n :

.

Коэффициент пропорциональности между
представляет собой удельную электропроводность . Таким образом,

.

Классическое выражение для электропроводности металлов имеет вид

,

где  - среднее время свободного пробега электронов, m - обычная (не эффективная) масса электрона.

Из сравнения формул и вытекает, что время релаксации совпадает по порядку величины с временем свободного пробега электронов в металле.

Исходя из физических соображений, удается произвести оценку величин, входящих в выражение, и тем самым вычислить по порядку величины проводимость . Полученные таким способом значения находятся в хорошем согласии с опытными данными. Также в согласии с опытом получается, что изменяется с температурой по закону 1/T . Напомним, что классическая теория дает, что обратно пропорциональна
.

Отметим, что выкладки, приведшие к формуле, одинаково пригодны как при классической трактовке движения электронов проводимости в металле, так и при квантовомеханической трактовке. Различие этих двух трактовок заключается в следующем. При классическом рассмотрении предполагается, что все электроны возмущаются внешним электрическим полем, в соответствии с чем каждое слагаемое в формуле получает добавку в направлении,

противоположном . При квантовомеханической трактовке приходится принимать во внимание, что возмущаются полем и изменяют свою скорость лишь электроны, занимающие состояния вблизи уровня Ферми. Электроны, находящиеся на более глубоких уровнях, полем не возмущаются, и их вклад в сумму не изменяется. Кроме того, при классической трактовке в знаменателе формулы должна стоять обычная масса электронаm , при квантовомеханической трактовке вместо обычной массы должна быть взята эффективная масса электрона m * . Это обстоятельство является проявлением общего правила, согласно которому соотношения, полученные в приближении свободных электронов, оказываются справедливыми и для электронов, движущихся в периодическом поле решетки, если в них заменить истинную массу электрона m эффективной массой m * .

Сверхпроводимость

При температуре порядка нескольких кельвин электрическое сопротивление ряда металлов и сплавов скачком обращается в нуль-вещество, переходит в сверхпроводящее состояние . Температура, при которой происходит этот переход, носит название критической температуры и обозначается T k . Наибольшее наблюдавшееся значение T k составляет  20 К.

Экспериментально сверхпроводимость можно наблюдать двумя способами:

1) включив в общую электрическую цепь звено из сверхпроводника. В момент перехода в сверхпроводящее состояние, разность потенциалов на концах этого звена обращается в нуль;

2) поместив кольцо из сверхпроводника в перпендикулярное к нему магнитное поле. Охладив затем кольцо ниже, выключают поле. В результате в кольце индуцируется незатухающий электрический ток. Ток в таком кольце циркулирует неограниченно долго.

Открывший явление сверхпроводимости голландский ученый Г.Камерлинг - Оннес продемонстрировал это, перевезя сверхпроводящее кольцо с текущим по нему током из Лейдена в Кембридж. В ряде экспериментов наблюдалось отсутствие затухания тока в сверхпроводящем кольце в течение примерно года. В 1959 г. Коллинз сообщил о наблюдавшемся им отсутствии уменьшения тока в течение двух с половиной лет.

Кроме отсутствия электрического сопротивления, для сверхпроводящего состояния характерно то, что магнитное поле не проникает в толщу сверхпроводника. Это явление называется эффектом Мейсснера . Если сверхпроводящий образец охлаждается, будучи помещенным в магнитное поле, в момент перехода в сверхпроводящее состояние поле выталкивается из образца, а магнитная индукция в образце обращается в нуль. Формально можно сказать, что сверхпроводник обладает нулевой магнитной проницаемостью ( = 0). Вещества с < 1 называются диамагнетиками. Таким образом, сверхпроводник является идеальным диамагнетиком.

Достаточно сильное внешнее магнитное поле разрушает сверхпроводящее состояние. Значение магнитной индукции, при котором это происходит, называется критическим полем и обозначается B k . Значение B k зависит от температуры образца. При критической температуре B k = 0, с понижением температуры значение B k возрастает, стремясь к - значению критического поля при нулевой температуре. Примерный вид этой зависимости показан на рис.1

Если усиливать ток, текущий через сверхпроводник, включенный в общую цепь, то при значении силы тока I k сверхпроводящее состояние разрушается. Это значение силы тока называется критическим током . Значение I k зависит от температуры. Вид этой зависимости аналогичен зависимости B k от T (см. рис.1).

Сверхпроводимость представляет собой явление, в котором квантовомеханические эффекты обнаруживаются не в микроскопических, а в крупных, макроскопических масштабах. Теория сверхпроводимости была создана в 1957 г. Дж. Бардиным, Л. Купером и Дж. Шриффером. Ее называют кратко теорией БКШ. Эта теория очень сложна. Поэтому мы вынуждены ограничиться изложением ее на уровне научно-популярных книг, что, по-видимому, не сможет полностью удовлетворить взыскательного читателя.

Разгадка сверхпроводимости заключается в том, что электроны в металле, кроме кулоновского отталкивания, испытывают особый вид взаимного притяжения, которое в сверхпроводящем состоянии преобладает над отталкиванием. В результате электроны проводимости объединяются в так называемые куперовские пары . Электроны, входящие в такую пару, имеют противоположно направленные спины. Поэтому спин пары равен нулю, и она представляет собой бозон. Бозоны склонны накапливаться в основном энергетическом состоянии, из которого их сравнительно трудно перевести в возбужденное состояние. Следовательно, куперовские пары, придя в согласованное движение, остаются в этом состоянии неограниченно долго. Такое согласованное движение пар и есть ток сверхпроводимости.

Поясним сказанное более подробно. Электрон, движущийся в металле, деформирует (поляризует) состоящую из положительных ионов кристаллическую решетку. В результате этой деформации электрон оказывается окруженным "облаком" положительного заряда, перемещающимся по решетке вместе с электроном. Электрон и окружающее его облако представляют собой положительно заряженную систему, к которой будет притягиваться другой электрон. Таким образом, ионная решетка играет роль промежуточной среды, наличие которой приводит к притяжению между электронами.

На квантовомеханическом языке притяжение между электронами объясняется как результат обмена между электронами квантами возбуждения решетки - фононами. Электрон, движущийся в металле, нарушает режим колебаний решетки - возбуждает фононы. Энергия возбуждения передается другому электрону, который поглощает фонон. В результате такого обмена фононами возникает дополнительное взаимодействие между электронами, которое имеет характер притяжения. При низких температурах это притяжение у веществ, являющихся сверхпроводниками, превышает кулоновское отталкивание.

Взаимодействие, обусловленное обменом фононами, наиболее сильно проявляется у электронов, обладающих противоположными импульсами и спинами. В результате два таких электрона объединяются в куперовскую пару. Эту пару не следует представлять себе как два слипшихся электрона. Напротив, расстояние между электронами пары весьма велико, оно составляет примерно 10 -4 см, т.е. на четыре порядка превышает межатомные расстояния в кристалле. Примерно 10 6 куперовских пар заметно перекрываются, т.е. занимают общий объем.

В куперовские пары объединяются не все электроны проводимости. При температуре T , отличной от абсолютного нуля, имеется некоторая вероятность того, что пара будет разрушена. Поэтому всегда наряду с парами имеются "нормальные" электроны, движущиеся по кристаллу обычным образом. Чем ближе T и T k , тем доля нормальных электронов становится больше, обращаясь в 1 при T = T k . . Следовательно, при температуре выше T k сверхпроводящее состояние возможно.

Образование куперовских пар приводит к перестройке энергетического спектра металла. Для возбуждения электронной системы, находящиеся в сверхпроводящем состоянии, надо разрушить хотя бы одну пару, на что требуется энергия, равная энергии связи E св электронов в паре. Эта энергия представляет собой минимальное количество энергии, которое может воспринять система электронов сверхпроводника. Следовательно, в энергетическом спектре электронов, находящихся в сверхпроводящем состоянии, имеется щель ширины E св, расположенная в области уровня Ферми. Значения энергии, принадлежащие этой щели, запрещены. Существование щели было доказано экспериментально.

Итак, возбужденное состояние электронной системы, находящейся в сверхпроводящем состоянии, отделено от основного состояния энергетической щелью ширины E св. Поэтому квантовые переходы этой системы не всегда будут возможными. При малых скоростях своего движения (отвечающих силе тока, меньшей I k) электронная система ее будет возбуждаться, а это и означает движение без трения, т.е. без электрического сопротивления.

Ширина энергетической щели E св с ростом температуры уменьшается и обращается в нуль при критической температуре T k . Соответственно все куперовские пары разрушаются, и вещество переходит в нормальное (несверхпроводящее) состояние.

Из теории сверхпроводимости следует, что магнитный поток Ф, связанный со сверхпроводящим кольцом (или цилиндром), по которому циркулирует ток, должен быть целым кратным величины
, гдеq - заряд носителя тока

.

Величина

представляет собой квант магнитного потока .

Квантование магнитного потока было экспериментально обнаружено в 1961 г. Дивером и Фейрбэнком и независимо от них Доллом и Небауэром. В опытах Дивера и Фейрбэнка образцом служил поясок олова, нанесенный на медную проволоку диаметром около 10 -3 см. Проволока играла роль каркаса и в сверхпроводящее состояние не переходила. Измеренные значения магнитного потока в этих опытах, как и в опытах Долла и Небауэра, оказались целыми кратными величины, в которой в качестве q надо взять удвоенный заряд электрона (q = - 2e ) . Это служит дополнительным подтверждением правильности теории БКШ, согласно которой носителями тока в сверхпроводнике являются куперовские пары, заряд которых равен суммарному заряду двух электронов, т.е. - 2e .

Полупроводники

Полупроводниками являются кристаллические вещества, у ко­торых валентная зона полностью заполнена электронами, а ширина запрещенной зоны невелика (у собственных полупроводников не более 1 эВ). Полупроводники обязаны своим названием тому обстоятельству, что по величине электропроводности они занимают промежуточное положение между металлами и диэлектриками. Однако характерным для них является не величина проводимости, а то, что их проводимость растет с повышением температуры (напомним, что у металлов она уменьшается).

Различают собственные и примесные полупроводники. К числу собственных относятся химически чистые полупроводники. Электрические свойства примесных полупроводников определяются имеющимися в них искусственно вводимыми примесями.

При рассмотрении электрических свойств полупроводников большую роль играет понятие "дырок". Остановимся на выяснении физического смысла этого понятия.

В собственном полупроводнике при абсолютном нуле все уровни валентной зоны полностью заполнены электронами, а в зоне проводимости электроны отсутствуют (рис.2,a). Электрическое поле не может перебросить электроны из валентной зоны в зону проводимости. Поэтому собственные полупроводники ведут себя при абсолютном нуле как диэлектрики. При температурах, отличных от 0 К, часть электронов с верхних уровней валентной зоны переходит в результате теплового возбуждения на нижние уровни зоны проводимости (рис.2,б). В этих условиях электрическое поле получает возможность изменять состояние электронов, находящихся в зоне проводимости. Кроме того, вследствие образования вакантных уровней в валентной зоне электроны этой зоны также могут изменять свою скорость под воздействием внешнего поля. В результате электропроводность полупроводника ста­новится отличной от нуля.

Оказывается, что при наличии вакантных уровней поведение электронов валентной зоны может быть представлено как движение положительно заряженных квазичастиц, получивших название "дырок". Из равенства нулю проводимости полностью заполненной валентной зоны вытекает, что сумма скоростей всех электронов такой зоны равна нулю

Выделим из этой суммы скорость k -го электрона

Из полученного соотношения вытекает, что, если k -й электрон в валентной зоне отсутствует, то сумма скоростей оставшихся электронов оказывается равной
. Следовательно, все эти электроны создадут ток, равный
. Таким образом, возникший ток оказывается эквивалентным току, который создавала бы частица с зарядом +e , имеющая скорость отсутствующего электрона. Это воображаемая частица и есть дырка.

К понятию дырок можно прийти также следующим путем. Вакантные уровни образуются у потолка валентной зоны. Как было показано, эффективная масса электрона, находящегося у потолка энергетической зоны, является отрицательной. Отсутствие частицы с отрицательным зарядом (-e ) и отрицательной массой m * эквивалентно наличию частицы с положительным зарядом (+e ) и положительной массой | m * | т.е. дырки.

Итак, по своим электрическим свойствам валентная зона с небольшим числом вакантных состояний эквивалентна пустой зоне, содержащей небольшое число положительно заряженных квазичастиц, называемых дырками.

Подчеркнем, что движение дырки не есть перемещение какой-то реальной положительно заряженной частицы. Представление о дырках отображает характер движения всей многоэлектронной системы в полупроводнике.

Собственная проводимость полупроводников

Собственная проводимость возникает в результате перехода электронов с верхних уровней валентной зоны в зону проводимости. При этом в зоне проводимости появляется некоторое число носителей тока - электронов, занимающих уровни вблизи дна зоны, одновременно в валентной зоне освобождается такое же число мест на верхних уровнях, в результате чего появляются дырки

Распределение электронов по уровням валентной зоны и зоны проводимости описываются функцией Ферми-Дирака. Это распределение можно сделать очень наглядным, изобразив, как это сделано на рис. график функции распределения совместно со схемой энергетических зон.

Соответствующий расчет дает, что у собственных полупроводников отсчитанное от потолка валентной зоны значение уровня Ферми равно

,

где E - ширина запрещенной зоны, а m д * и m э * - эффективные массы дырки и электрона, находящегося в зоне проводимости. Обычно второе слагаемое пренебрежимо мало, и можно полагать
. Это означает, что уровень Ферми лежит посредине запрещенной зоны, Следовательно, для электронов, перешедших в зону проводимости, величинаE - E F мало отличается от половины ширины запрещенной зоны. Уровни зоны проводимости лежат на хвосте кривой распределения. Поэтому вероятность их заполнения электронами можно находить по формуле (1.23) предыдущего параграфа. Положив в этой формуле
, получим, что

.

Количество электронов, перешедших в зону проводимости, а следовательно и количество образовавшихся дырок, будет пропорционально вероятности. Эти электроны и дырки являются носителями тока. Поскольку проводимость пропорциональна числу носителей, она также должна быть пропорциональна выражению. Следовательно, электропроводность собственных полупроводников быстро растет с температурой, изменяясь по закону

,

где  E - ширина запрещенной зоны, 0 - величина, изменяющаяся с температурой гораздо медленнее, чем экспонента, в связи с чем ее можно в первом приближении считать константой.

Если на графике откладывать зависимость ln от T , то для собственных полупроводников получается прямая линия, изображен­ная на рис.4. По наклону этой прямой можно определить ширину запрещенной зоны  E .

Типичными полупроводниками являются элементы IV группы периодической системы Менделеева - германий и кремний. Они образуют решетку типа алмаза, в которой каждый атом связан ковалентными (парно-электронными) связями с четырьмя равноотстоящими от него соседними атомами. Условно такое взаимное расположение атомов можно представить в виде плоской структуры, изображенной на рис. 5. Кружки со знаком обозначают положительно заряженные атомные остатки (т.е. ту часть атома, которая остается после удаления валентных электронов), кружки со знаком- валентные электроны, двойные линии - ковалентные связи.

При достаточно высокой температуре тепловое движение может разорвать отдельные пары, освободив один электрон. Покинутое электроном место перестает быть нейтральным, в его окрестности возникает избыточный положительный заряд , т.е. образу­ется дырка (на рис.5 она изображена пунктирным кружком). На это место может перескочить электрон одной из соседних пар. В результате дырка начинает также странствовать по кристаллу, как и освободившийся электрон.

При встрече свободного электрона с дыркой они рекомбинируют (соединяются). Это означает, что электрон нейтрализует избыточный положительный заряд, имеющийся в окрестности дырки, и теряет свободу передвижения до тех пор, пока снова не получит от кристаллической решетки энергию, достаточную для своего высвобождения. Рекомбинация приводит к одновременному исчезновению свободного электрона и дырки. На схеме уровней процессу рекомбинации соответствует переход электрона из зоны проводимости на один из свободных уровней валентной зоны.

Итак, в собственном полупроводнике идут одновременно два процесса: рождение попарно свободных электронов и дырок и рекомбинация, приводящая к попарному исчезновению электронов и дырок. Вероятность первого процесса быстро растет с температурой. Вероятность рекомбинации пропорциональна как числу свободных электронов, так и числу дырок. Следовательно, каждой температуре соответствует определенная равновесная концентрация электронов и дырок, которая изменяется с температурой пропорционально выражению.

Когда внешнее электрическое поле отсутствует, электроны проводимости и дырки движутся хаотически. При включении поля на хаотическое движение накладывается упорядоченное движение: электронов против поля и дырок - в направлении поля. Оба движения- и дырок, и электронов - приводит к переносу заряда вдоль кристалла. Следовательно, собственная электропроводность обусловливается как бы носителями заряда двух знаков - отрицательными электронами и положительными дырками.

Отметим, что при достаточно высокой температуре собственная проводимость наблюдается во всех без исключения полупроводниках. Однако в полупроводниках, содержащих примесь, электропроводность слагается из собственной и примесной проводимостей.

Примесная проводимость полупроводников

Примесная проводимость возникает, если некоторые атомы данного полупроводника заменить в узлах кристаллической решетки атомами, валентность которых отличается на единицу от валентности основных атомов. На рис.6 условно изображена решетка германия с примесью пятивалентных атомов фосфора. Для образования ковалентных связей с соседями атому фосфора достаточно четырех электронов. Следовательно, пятый валентный электрон оказывается как бы лишним и легко отщепляется от атома за счет энергии теплового движения, образуя странствующий свободный электрон.

В отличие от случая, рассмотренного в предыдущем параграфе, образование свободного электрона не сопровождается нарушением ковалентных связей, т.е. образованием дырки. Хотя в окрестности атома примеси возникает избыточный положительный заряд, но он связан с этим атомом и перемещаться по решетке не может.

Благодаря этому заряду атом примеси может захватить приблизив­шийся к нему электрон, но связь захваченного электрона с атомом будет непрочной и легко нарушается вновь за счет тепловых колебаний решетки.

Таким образом, в полупроводнике с примесью, валентность которой на единицу больше валентности основных атомов, имеется только один вид носителей тока-электроны. Соответственно говорят, что такой полупроводник обладает электронной проводимостью или является полупроводником n - типа (от слова negativ - отрицательный). Атомы примеси, поставляющие электроны проводимости называются донорами .

Электронная проводимость металлов

Классификация проводников

ТЕМА 3 ФИЗИЧЕСКИЕ ЭФФЕКТЫ В ПРОВОДНИКАХ

Особенности проводимости металлов, тепловое и дрейфовое движение электропроводимости.

В электронной промышленности широко применяются металлы и их сплавы, из которых делают проводники.

Классифицируются по агрегатному состоянию: газообразные, жидкие, твёрдые.

Газообразные – пары веществ и газы при напряжённости электрического поля, ĸᴏᴛᴏᴩᴏᴇ обеспечивает ионизацию молекул. В них электрический ток создаётся как электронами, так и ионами. Используются в газоразрядных приборах.

Жидкие – растворы различных солей, кислот, щелочей, а также их расплавы (электролиты). Ток связан с переносом ионов, при этом состав электролита изменяется, а на электродах, погружённых в электролит, происходит выделœение вещества из раствора.

Твёрдые - ϶ᴛᴏ металлы, которые занимают в таблице Менделœеева более 75%. Ток в них создаётся только электронами, а в связи с этим нет переноса вещества от одного электрода к другому.

По применению металлические материалы подразделяются:

Металлы высокой проводимости;

Сплавы высокого сопротивления.

Металлы высокой проводимости : серебро, медь, алюминий, желœезо, золото.

Сверхпроводники (при низких t 0 C): алюминий, ртуть, свинœец, ниобий, соединœения с оловом, титаном, цирконием.

Сплавы высокого сопротивления :

Медно-марганцовые (манганин);

Медно-никелœевые (константаны);

Желœеза, никеля и хрома (нихромы).

Элементы первой группы таблицы Менделœеева одновалентны. Валентный электрон слабо связан со своим ядром и при любых внешних воздействиях разрывает связь с ядром и становится свободным. По этой причине в узлах кристаллической решётки находятся положительно заряженные атомы (ионы), а между ними перемещаются свободные электроны.

Ионы и электроны находятся в беспорядочном движении. Энергия этого движения представляет внутреннюю энергию тока.

Движение ионов, образующих решётку, состоит лишь в колебаниях около своих положений равновесия. Свободные электроны могут перемещаться по всœему объёму металла. При отсутствии внутри металла электрического поля, движение электронов хаотично, в каждый момент скорости различных электронов различны и имеют всœевозможные направления. Электроны подобны газу, в связи с этим их часто называют электронным газом.

Тепловое движение не вызывает никакого тока, так как вследствие полной хаотичности в каждом направлении будет двигаться столько же электронов, сколько в противоположном, и в связи с этим суммарный заряд, переносимый через любую площадку внутри, будет равен нулю.

В случае если на концах проводника создать разность потенциалов, ᴛ.ᴇ. создать внутри электрическое поле, то на каждый электрон будет действовать сила, каждый электрон получит дополнительные скорости, направленные в одну сторону. Движение станет направленным, ᴛ.ᴇ. будет электрический ток.

Вывод:

Хаотическое движение обусловлено воздействием внешних факторов (тепла). Направленное движение за счёт разности потенциалов принято называть дрейфовым.

Проводимость разных металлов различная, так как обусловлена:

Различным количеством свободных электронов в единице объёма;

Условиями движения электронов, связанных с различной длинной свободного пробега, ᴛ.ᴇ. пути, проходимого в среднем электроном между двумя соударениями с ионами.

На практике используют понятия: удельная проводимость и удельное сопротивление:

s - удельная проводимость, МСu/м

r - удельное сопротивление, Ом*мм 2 / м

r = 1/s = 1/еnm = 2mu т /е 2 n l ср,

где е – заряд электрона = 1,6 * 10 -19 ;

n – количество свободных электронов;

m - подвижность электрона, обусловленная электрическим полем;

m – масса электрона = 9,1 * 10 -31 кг;

l ср - средняя длина свободного пробега;

u т – средняя скорость теплового движения.

Значения u т ,n , в различных проводниках примерно одинаковы, к примеру:

n меди = 8,5*10 28 м -3 , n алюм = 8,3*10 28 м -3 , значение скорости теплового движения приблизительно u т = 10 5 м/с.

Для каждого металла существует определённый температурный коэффициент сопротивления при изменении Т 0 на 1 0 С, отнесённый к 10м начального сопротивления (a):

a = R 2 -R 1 / R 1 (T 2 -T 1) ,

где R 1 – сопротивление при T 1

R 2 – сопротивление при T 2

отсюда R 2 = R 1

Это соотношение справедливо для температур 100-150 0 С.

Электронная проводимость металлов - понятие и виды. Классификация и особенности категории "Электронная проводимость металлов" 2017, 2018.

Рассмотрим поведение электронов проводимости в металле в неравновесном состоянии, когда они движутся под действием приложенных внешних полей. Такие процессы называются явлениями переноса.

Как известно, электропроводность (удельная электрическая проводимость) о - это величина, связывающая плотность электрического тока и напряженность в локальном законе Ома: j - оЕ (см. формулу (14.15) ч. 1). Все вещества по характеру электропроводности делятся на три класса: металлы, полупроводники и диэлектрики.

Характерной особенностью металлов является их металлическая проводимость - уменьшение электропроводности при повышении температуры (при постоянной концентрации носителей тока). Физической причиной электрического сопротивления в металлах является рассеяние электронных волн на примесях и дефектах решетки, а также на фононах.

Наиболее существенной особенностью полупроводников является их способность изменять свои свойства в чрезвычайно широких пределах под влиянием различных воздействий: температуры, электрического и магнитного полей, освещения и т.д. Например, собственная проводимость чистых полупроводников при их нагревании экспоненциально возрастает.

При Т > 300 К удельная проводимость о материалов, относящихся к полупроводникам, изменяется в широком интервале от 10~ 5 до 10 6 (Ом м) -1 , тогда как у металлов о составляет более 10 6 (Ом м) -1 .

Вещества, обладающие малой удельной проводимостью, порядка 10~ 5 (Ом м) -1 и менее, относятся к диэлектрикам. Проводимость у них возникает при очень высоких температурах.

Квантовая теория приводит к следующему выражению для электропроводности металлов:

где п - концентрация свободных электронов; т - время релаксации; т* - эффективная масса электрона.

Время релаксации характеризует процесс установления равновесия между электронами и решеткой, нарушенного, например, внезапным включением внешнего поля Е.

Термин «свободный электрон» означает, что на электрон не действуют никакие силовые поля. Движение электрона проводимости в кристалле под действием внешней силы F и сил со стороны кристаллической решетки в ряде случаев может быть описано как движение свободного электрона, на который действует только сила F (второй закон Ньютона, см. формулу (3.5) ч. 1), но с эффективной массой т*, отличной от массы т е свободного электрона.

Расчеты с использованием выражения (30.18) показывают, что электропроводность металлов о~1/Т. Эксперимент подтверждает данный вывод квантовой теории, в то время как согласно классической теории

о ~ l/fr.

В полупроводниках концентрация подвижных носителей значительно ниже, чем концентрация атомов, и может изменяться при изменении температуры, освещения, при облучении потоком частиц, воздействии электрического поля или введении относительно малого количества примесей. Носителями заряда в полупроводниках в зоне проводимости являются электроны (электроны проводимости), а в валентной зоне - положительно заряженные квазичастицы дырки. Когда в валентной зоне по какой-либо причине отсутствует электрон, то говорят, что в ней образовалась дырка (вакантное состояние). Представления о дырках и электронах проводимости используются для описания электронной системы полупроводников, полуметаллов и металлов.

В состоянии термодинамического равновесия концентрации электронов и дырок в полупроводниках зависят как от температуры и концентрации электрически активных примесей, так и от ширины запрещенной зоны АЕ.

Различают собственные и примесные полупроводники. Собственными полупроводниками являются химически чистые полупроводники (например, германий Ge, селен Se). Число электронов в них равно числу дырок. Проводимость таких полупроводников называется собственной.

В собственных полупроводниках при Т = О К валентная зона полностью заполнена, а зона проводимости - свободна. Поэтому при Т= О К и отсутствии внешнего возбуждения собственные полупроводники ведут себя как диэлектрики. При повышении температуры вследствие термического возбуждения электроны с верхних уровней валентной зоны будут переходить в зону проводимости. Одновременно становится возможным переход электронов валентной зоны на ее освободившиеся верхние уровни. Электроны в зоне проводимости и дырки в валентной зоне будут давать вклад в электропроводность.

Необходимая для переброски электрона из валентной зоны в зону проводимости энергия называется энергией активации собственной проводимости.

При наложении на кристалл внешнего электрического поля электроны перемещаются против поля и создают электрический ток. Во внешнем поле, когда на вакантное место перемешается соседний валентный электрон, дырка «перемешается» на его место. В результате дырка, так же как и перешедший в зону проводимости электрон, будет двигаться по кристаллу, но в направлении, противоположном движению электрона. Формально по кристаллу в направлении поля движется частица с положительным зарядом, равным абсолютной величине заряда электрона. Для учета действия на элементарные заряды внутреннего поля кристалла для дырок вводят понятие эффективной массы ш*. Поэтому при решении задач можно считать, что дырка с эффективной массой движется только под действием одного внешнего поля.

Во внешнем поле направление скоростей движения электронов и дырок противоположны, но создаваемый ими электрический ток имеет одинаковое направление - направление электрического поля. Таким образом, плотность тока при собственной проводимости полупроводника складывается из плотности тока электронов у э и дырок у д:

Электропроводность о пропорциональна числу носителей, значит, можно доказать, что для собственных полупроводников

и зависит от температуры по экспоненциальному закону. Вклад в о электронов и дырок различен, что объясняется различием их эффективных масс.

При сравнительно высоких температурах во всех полупроводниках преобладает собственная проводимость. Иначе электрические свойства полупроводника определяются примесями (атомами других элементов), и тогда говорят о примесной проводимости. Электропроводность будет слагаться из собственной и примесной проводимостей.

Примесными полупроводниками называются полупроводники, отдельные атомы которых замещаются примесями. Концентрация электронов и дырок в них значительно отличается. Примеси, являющиеся источниками электронов, называются донорами. Примеси, захватывающие электроны из валентной зоны, называются акцепторами.

В результате введения примеси в запрещенной зоне возникают дополнительные разрешенные электронные уровни энергии, расположенные в запрещенной зоне близко или ко дну зоны проводимости (донорные уровни ), или к потолку валентной зоны (акцепторные уровни). Это существенно увеличивает электропроводность полупроводников.

В полупроводниках я-типа (от англ, negative - отрицательный) с донорной примесью реализуется электронный механизм проводимости. Проводимость в них обеспечивается избыточными электронами примеси, валентность которой на единицу больше валентности основных атомов.

В полупроводниках р-типа (от англ, positive - положительный) с акцепторной примесью реализуется дырочный механизм проводимости. Проводимость в них обеспечивается дырками вследствие введения примеси, валентность которой на единицу меньше валентности основных атомов.

Убедительное доказательство реальности положительных дырок дает эффект Холла (1879). Данный эффект заключается в возникновении в металле (или полупроводнике) с током плотностью у, помещенном в магнитное поле В , дополнительного электрического поля в направлении, перпендикулярном В и у. Использование эффекта Холла (измерение коэффициента Холла, зависящего от вещества) позволяет определять концентрацию и подвижность носителей заряда в проводнике, а также устанавливать природу проводимости полупроводника (электронная или дырочная).

В настоящее время при разработке материалов для микроэлектроники создаются различные полупроводниковые материалы, в том числе с широкой запрещенной зоной. Полупроводниковые микросхемы считаются одним из перспективных направлений микроэлектроники, позволяя создавать надежные и достаточно сложные в функциональном отношении интегральные схемы.