Как отличить металлы от неметаллов вид. Чем металлы отличаются от неметаллов - особенности, свойства и характеристики

Неметаллы - это элементы, значительно отличающиеся физическими и химическими свойствами от металлов. Подробно объяснить причину их различий смогли только в конце XIX века, после открытия электронного строения атома. В чем же особенность неметаллов? Какие качества характерны дня них? Давайте разберемся.

Неметаллы - это что?

Подход к разделению элементов на металлы и неметаллы давно существует в научной среде. К первым в периодической таблице Менделеева обычно относят 94 элемента. Неметаллы Менделеева включают 22 элемента. В они занимают верхний правый угол.

В свободном виде неметаллы - это простые вещества, главной чертой которых является отсутствие характерных металлических свойств. Они могут находиться во всех агрегатных состояниях. Так, йод, фосфор, сера, углерод встречаются в виде твердых веществ. Газообразное состояние характерно для кислорода, азота, фтора и т. д. Жидкостью является только бром.

В природе элементы неметаллы могут существовать как в виде простых веществ, так и в виде соединений. В несвязанном виде встречаются сера, азот, кислород. В соединениях они образуют бораты, фосфаты и т. д. В таком виде они присутствуют в минералах, воде, горных породах.

Отличие от металлов

Неметаллы - это элементы, отличающиеся от металлов внешним видом, строением и химическими свойствами. Они обладают большим числом неспаренных электронов на внешнем уровне, а значит, более активны в окислительных реакциях и легче присоединяют к себе дополнительные электроны.

Характерное различие между элементами наблюдается в строении кристаллической решетки. У металлов она металлическая. У неметаллов она может быть двух видов: атомная и молекулярная. Атомная решетка придает веществам твердость и повышает температуру плавления, она свойственна кремнию, бору, германию. Молекулярной решеткой обладают хлор, сера, кислород. Она придает им летучесть и небольшую твердость.

Внутреннее строение элементов определяет их физические свойства. Металлы имеют характерный блеск, хорошую проводимость тока и тепла. Они твердые, пластичные, поддаются ковке, имеют небольшой цветовой диапазон (черный, оттенки серого, иногда желтоватый цвет).

Неметаллы - это жидкие, газообразные или не обладающие блеском и ковкостью. Их цвета сильно варьируются и могут быть красными, черными, серыми, желтыми и т. д. Почти все неметаллы плохо проводят ток (кроме углерода) и тепло (кроме черного фосфора и углерода).

Химические свойства неметаллов

В химических реакциях неметаллы могут исполнять роль как окислителей, так и восстановителей. При взаимодействии с металлами они принимают на себя электроны, проявляя таким образом окислительные свойства.

Взаимодействуя с другими неметаллами, они ведут себя по-разному. В таких реакциях менее электроотрицательный элемент проявляет себя как восстановитель, более электроотрицательный выступает окислителем.

С кислородом почти все (кроме фтора) неметаллы проявляют себя восстановителями. При взаимодействии с водородом многие являются окислителями, образуя впоследствии летучие соединения.

Часть элементов неметаллов обладает способностью образовывать несколько простых веществ или модификаций. Это явление называется аллотропией. Например, углерод существует в форме графита, алмаза, карбина и других модификаций. У кислорода их две - озон и собственно кислород. Фосфор бывает красный, черный, белый и металлический.

Неметаллы в природе

В разном количестве неметаллы находятся повсюду. Они входят в состав земной коры, являются частью атмосферы, гидросферы, присутствуют во Вселенной и в живых организмах. В космическом пространстве самыми распространенными являются водород и гелий.

В пределах Земли ситуация совсем иная. Наиболее важные составляющие земной коры - кислород и кремний. Они составляют больше 75 % от её массы. А вот наименьшее количество приходится на йод и бром.

В составе морской воды на кислород приходится 85,80 %, а на водород - 10,67 %. Её состав также включает хлор, серу, бор, бром, углерод, фтор и кремний. В составе атмосферы первенство принадлежит азоту (78 %) и кислороду (21 %).

Неметаллы, такие как углерод, водород, фосфор, сера, кислород и азот, представляют собой важные органические вещества. Они поддерживают жизненную активность всех живых существ на нашей планете, в том числе и людей.

Дмитрий Менделеев смог создать уникальную таблицу химических элементов, главным достоинством которой была периодичность. Металлы и неметаллы в таблице Менделеева располагаются так, что их свойства изменяются периодическим образом.

Периодическая система была составлена Дмитрием Менделеевым во второй половине 19 века. Открытие не только позволило упростить работу химиков, она смогла объединить в себе как в единой системе все открытые химические вещества, а также предсказать будущие открытия.

Создание данной структурированной системы бесценно для науки и для человечества в целом. Именно это открытие дало толчок развитию всей химии на долгие годы.

Интересно знать ! Существует легенда, что готовая система привиделась ученому во сне.

В интервью одному журналисту ученый объяснил, что работал над ней 25 лет и то, что она ему снилась – вполне естественно, но это не значит, что во сне пришли все ответы.

Созданная Менделеевым система делится на две части:

  • периоды – столбики по горизонтали в одну или две строки (ряды);
  • группы – вертикальные строчки, в один ряд.

Всего в системе 7 периодов, каждый следующий элемент отличен от предыдущего большим количеством электронов в ядре, т.е. заряд ядра каждого правого показателя больше левого на единицу. Каждый период начинается с металла, а заканчивается инертным газом – именно это и есть периодичность таблицы, ведь свойства соединений меняются внутри одного периода и повторяются в следующем . При этом, следует помнить, что 1-3 периоды неполные или малые, в них всего 2, 8 и 8 представителей. В полном периоде (т.е. оставшихся четырех) по 18 химических представителей.

В группе располагаются химические соединения с одинаковой высшей , т.е. у них одинаковое электронное строение. Всего в системе представлено 18 групп (полная версия), каждая из которых начинается щелочью и заканчивается инертным газом. Все, представленные в системе субстанции, можно разделить на две основные группы – металл или неметалл.

Для облегчения поиска группы имеют свое название, а металлические свойства субстанций усиливаются с каждой нижней строчкой, т.е. чем ниже соединение, тем больше у него будет атомных орбит и тем слабее электронные связи. Также меняется и кристаллическая решетка – она становится ярко выраженной у элементов с большим количеством атомных орбит.

В химии используют три вида таблиц:

  1. Короткая – актиноиды и лантаноиды вынесены за границы основного поля, а 4 и все последующие периоды занимают по 2 строчки.
  2. Длинная – в ней актиноиды и лантаноиды вынесены за границу основного поля.
  3. Сверхдлинная – каждый период занимает ровно 1 строку.

Главной считается та таблица Менделеева, которая была принята и подтверждена официально, но для удобства чаще используют короткую версию. Металлы и неметаллы в таблице Менделеева располагаются согласно строгим правилам, которые облегчают работу с ней.

Металлы в таблице Менделеева

В системе Менделеева сплавы имеют преобладающее число и список их весьма велик – они начинаются с Бора (В) и заканчиваются полонием (Po) (исключением являются германий (Ge) и сурьма (Sb)). У этой группы есть характерные признаки, они разделены на группы, но их свойства при этом неоднородны. Характерные их признаки:

  • пластичность;
  • электропроводимость;
  • блеск;
  • легкая отдача электронов;
  • ковкость;
  • теплопроводность;
  • твердость (кроме ртути).

Из-за различной химической и физической сути свойства могут существенно отличаться у двух представителей этой группы, не все они похожи на типичные природные сплавы, к примеру, ртуть – это жидкая субстанция, но относится к данной группе.

В обычном своем состоянии она жидкая и без кристаллической решетки, которая играет ключевую роль в сплавах. Только химические характеристики роднят ртуть с данной группой элементов, несмотря на условность свойств этих органических соединений. То же самое касается и цезия – самого мягкого сплава, но он не может в природе существовать в чистом виде.

Некоторые элементы такого типа могут существовать только доли секунды, а некоторые не встречаются в природе совсем – их создали в искусственных условиях лаборатории. У каждой из групп металлов в системе есть свое название и признаки, которые отличают их от других групп.

При этом отличия у них весьма существенные. В периодической системе все металлы располагаются по количеству электронов в ядре, т.е. по увеличению атомной массы. При этом для них характерно периодическое изменение характерных свойств. Из-за этого в таблице они не размещаются аккуратно, а могут стоять неправильно.

В первой группе щелочей нет веществ, которые бы встречались в чистом виде в природе – они могут пребывать только в составе различных соединений.

Как отличить металл от неметалла?

Как определить металл в соединении? Существует простой способ определения, но для этого необходимо иметь линейку и таблицу Менделеева. Для определения надо:

  1. Провести условную линию по местам соединения элементов от Бора до Полония (можно до Астата).
  2. Все материалы, которые будут слева линии и в побочных подгруппах – металл.
  3. Вещества справа – другого типа.

Однако у способа есть изъян – он не включает в группу Германий и Сурьму и работает только в длинной таблице. Метод можно использовать в качестве шпаргалки, но чтобы точно определить вещество, следует запомнить список всех неметаллов. Сколько их всего? Мало – всего 22 вещества.

В любом случае, для определения природы вещества необходимо рассматривать его в отдельности. Легко будет элементы, если знать их свойства. Важно запомнить, что все металлы:

  1. При комнатной температуре – твердые, за исключением ртути. При этом они блестят и хорошо проводят электрический ток.
  2. У них на внешнем уровне ядра меньшее количество атомов.
  3. Состоят из кристаллической решетки (кроме ртути), а все другие элементы имеют молекулярную или ионную структуру.
  4. В периодической системе все неметаллы – красного цвета, металлы – черного и зеленого.
  5. Если двигаться слева направо в периоде, то заряд ядра вещества будет увеличиваться.
  6. У некоторых веществ свойства выражены слабо, но они все равно имеют характерные признаки. Такие элементы относятся к полуметаллам, например Полоний или Сурьма, они обычно располагаются на границе двух групп.

Внимание! В левой нижней части блока в системе всегда стоят типичные металлы, а в правой верхней — типичные газы и жидкости.

Важно запомнить, что при перемещении в таблице сверху вниз становятся сильнее неметаллические свойства веществ, поскольку там располагаются элементы, которые имеют отдаленные внешние оболочки . Их ядро отделено от электронов и поэтому они притягиваются слабее.

Полезное видео

Подведем итоги

Отличить элементы будет просто, если знать основные принципы формирования таблицы Менделеева и свойства металлов. Полезно будет также запомнить и список остальных 22 элементов. Но не нужно забывать, что любой элемент в соединении следует рассматривать в отдельности, не учитывая его связей с другими веществами.

Инструкция

Как уже было сказано, вещества различаются по своим физическим свойствам. Все металлы , за исключением ртути, при комнатной температуре являются твердыми веществами. Они обладают характерным «металлическим» блеском, хорошо проводят тепло и электрический ток. Большинство металлов пластичны, то есть, легко могут изменять свою форму при физическом воздействии на них.

По своим физическим свойствам неметаллы имеют гораздо больше различий, чем металлы . Они могут находиться в жидком (бром), твердом (сера) и газообразном (водород) состоянии. Обладают низкой теплопроводностью, плохо проводят и электрический ток.

Отличить металлы от можно и по их строению. У неметаллов число свободных атомов на внешнем уровне больше, чем у металлов. Металлы имеют немолекулярное строение – они состоят из кристаллической решетки. Неметаллы же, напротив, обладают молекулярной или структурой.

Для того чтобы отличить металл от неметалла , не обязательно изучать их физические и , достаточно будет взглянуть на таблицу Менделеева. Мысленно проведите лесенку от бора до . Металлы располагаются в левой нижней части таблицы, а также в побочных подгруппах вверху от лесенки. Неметаллы – в оставшейся части в главных подгруппах.

Существуют также амфотерные элементы. Эти вещества способны в различных химических реакциях проявлять свойства как металлов, так . К таким элементам относятся цинк, алюминий, сурьма. В своей высшей они способны проявлять свойства, характерные для неметаллов.

Большинство газов не имеют цвета и запаха, поэтому очень трудно их отличить друг от друга. Кроме того, они иногда находятся в смеси с воздухом. Поэтому отличать газы друг от друга следует, пользуясь химическими методами.

Инструкция

Учтите, что метан и водород имеют ряд одинаковых свойств, что затрудняет процесс отличения их друг от друга. Оба газа абсолютно бесцветны, не имеют запаха и горят пламенем цвета. По своим физико-химическим свойствам водород амфотерны, малорастворимы в воде и спиртах, имеют меньшую плотность, чем воздух. Отличий же у них немного.

Обратите внимание на то, как сгорают водород и метан. В обоих случая, пламя имеет синеватый цвет. Смесь любого из этих газов с воздухом в небольшой пробирке при поджигании также одинаково резко сгорает. Но метан при сгорании выделяет сажу. Для того, чтобы это проверить, возьмите холодную металлическую пластинку и поднесите пламени, причем, так, чтобы она касалась его нижней части. Если вы увидите на одной из пластинок сажу, значит, сгорает метан, если нет - водород . Происходит это по той причине, что при температуре 500 градусов метан разлагается на две составные части:CH4=C+H2, где С - углерод, из которого и состоит сажа. Именно она используется для изготовления черной краски под названием «сажа газовая».

Природа имеет некую цикличность и повторяемость в своих проявлениях. На это обращали внимание и древнегреческие ученые, когда пытались разложить природу вещей на составляющие: стихии, геометрические фигуры и даже атомы. На признаки повторяемости также обращают внимание и ученые современности. Например, Карл Линней на основе фенотипичного сходства смог выстроить систему живых существ.

Долгое время химия как наука оставалась без системы, которая могла бы упорядочить великое множество открытых веществ. Знания древних алхимиков дали богатейший материал для построения такой системы. Многие учёные предпринимали попытки выстроить гармоничную схему, но все попытки оказались тщетными. Так было вплоть до 1869 года, когда великий русский химик Дмитрий Иванович Менделеев представил миру своё детище – периодическую таблицу химических элементов. Говорят, что таблица приснилась учёному. Во сне он увидел, как таблица выстроилась в виде змеи и обвилась вокруг его ног. Достоверность этого факта сомнительна , но как бы то ни было, это был настоящий прорыв в науке.

Менделеев расположил элементы по мере возрастания их атомной массы. Этот принцип актуален и сейчас, правда, сейчас в основе лежит количество протонов и нейтронов в ядре.

Металлы и их отличительные свойства

Все химические элементы можно довольно условно поделить на металлы и неметаллы. Что же их отличает друг от друга? Как отличить металл от неметалла?

Из 118 открытых веществ 94 относят к группе металлов. Группа представлена разнообразными подгруппами:

Какие же признаки являются общими для всех металлов?

  1. Все металлы при комнатной температуре являют твёрдыми веществами. Это справедливо для всех элементов, кроме ртути, которая тверда до минус 39 градусов Цельсия. В комнатных условиях ртуть – это жидкость.
  2. Большинство из элементов этой группы имеют довольно высокую температуру плавления. Например, Вольфрам плавится при температуре 3410 градусов Цельсия. По этой причине его используют для изготовления нити в лампах накаливания.
  3. Все металлы пластичны. Это проявляется в том, что кристаллическая решетка металла позволяет атомам смещаться. В результате металлы могут гнуться без физической деформации, поддаются ковке. Особой пластичностью обладают медь, золото и серебро. Именно поэтому исторически они были первыми металлами, которые обрабатывал человек. Далее он научился обрабатывать железо.
  4. Все металлы очень хорошо проводят электричество, что опять же связано со строением металлической кристаллической решетки, имеющей подвижные электроны. Кроме всего прочего, эти элементы очень легко проводят тепло.
  5. Ну и, наконец, все металлы имеют характерный, ни с чем не сравнимый металлический блеск. Цвет чаще всего сероватой с голубым отливом. Au, Cu или Cs имеют желтый и красный оттенки.

Не пропустите: механизм образования , конкретные примеры.

Неметаллы

Все неметаллы расположены в правом верхнем углу периодической таблицы по диагонали, которую можно провести от водорода до астата и радона. Кстати говоря, водород при определенных условиях также может проявлять металлические свойства.

Основное отличие от металлов заключается в строении кристаллической решетки. Если у металлов кристаллическая решетка металлическая, то у неметаллов она может быть атомной или молекулярной. Молекулярной решеткой обладают некоторые газы – кислород, хлор, сера, азот. Вещества с атомной решеткой имеют твёрдое агрегатное состояние, относительно высокую температуру плавления.

Физические свойства неметаллов довольно разнообразны, неметаллы могут быть твердыми (йод, углерод, сера, фосфор), жидкими (только бром), газообразными (фтор, хлор, азот, кислород, водород) веществами с абсолютно разнообразным цветом. Агрегатное состояние может меняться под действием температуры.

С химической точки зрения, неметаллы могут выступать в роли окислителей и восстановителей. Неметаллы могут взаимодействовать между собой и с металлами. Кислород, к примеру, со всеми веществами выступает в роли окислителя, а вот с фтором выступает в роли восстановителя.

Аллотропия

Еще одно удивительное свойство неметаллов заключается в явлении, которое назвали аллотропией – видоизменение веществ, приводящее к различным аллотропным модификациям одного и того же химического элемента. С греческого можно перевести слово “аллотропия” как “другое свойство”. Так оно и есть.

Рассмотрим более подробно на примере списка некоторых простых веществ:

Модификации имеют и другие вещества – сера, селен, бор, мышьяк, бор, кремний, сурьма. При различных температурах многие металлы также обладают этими свойствами.

Конечно, деление всех простых веществ на группы металлов и неметаллов довольно условно. Это деление облегчает понимание свойств химических веществ, создает иллюзию их разделения на обособленные вещества. Как и все в мире, это деление относительное и зависит от внешних факторов окружающей среды – давления, температуры, света и т.д.


РЕФЕРАТ

МЕТАЛЛЫ

НЕМЕТАЛЛЫ

МЕТАЛЛЫ

Строение атомов металлов. Положение металлов в периодической системе. Группы металлов.

В настоящее время известно 107 химических элементов, большинство из них - металлы. Последние весьма распространены в природе и встречаются в виде различных соединений в недрах земли, водах рек, озер, морей, океанов, составе тел животных, растений и даже в атмосфере.

По своим свойствам металлы резко отличаются от неметаллов. Впервые это различие металлов и неметаллов определил М. В. Ломоносов. «Металлы, - писал он, - тела твердые, ковкие блестящие».

Причисляя тот или иной элемент к разряду металлов, мы имеем в виду наличие у него определенного комплекса свойств:

1. Плотная кристаллическая структура.

2. Характерный металлический блеск.

3. Высокая теплопроводность и электрическая проводимость.

4. Уменьшение электрической проводимости с ростом температуры.

5. Низкие значения потенциала ионизации, т.е. способность легко отдавать электроны.

6. Ковкость и тягучесть.

7. Способность к образованию сплавов.

Все металлы и сплавы, применяемые в настоящее время в технике, можно разделить на две основные группы. К первой из них относят черные металлы - железо и все его сплавы, в которых оно составляет основную часть. Этими сплавами являются чугуны и стали. В технике часто используют так называемые легированные стали. К ним относятся стали, содержащие хром, никель, вольфрам, молибден, ванадий, кобальт, титан и другие металлы. Иногда в легированные стали входят 5-6 различных металлов. Методом легирования получают различные ценные стали, обладающие в одних случаях повышенной прочностью, в других - высокой сопротивляемостью к истиранию, в третьих - коррозионной устойчивостью, т.е. способностью не разрушаться под действием внешней среды.

Ко второй группе относят цветные металлы и их сплавы. Они получили такое название потому, что имеют различную окраску. Например, медь светло-красная, никель, олово, серебро - белые, свинец - голубовато-белый, золото -желтое. Из сплавов в практике нашли большое применение: бронза - сплав меди с оловом и другими металлами, латунь - сплав меди с цинком, баббит - сплав олова с сурьмой и медью и др.

Это деление на черные и цветные металлы условно.

Наряду с черными и цветными металлами выделяют еще группу благородных металлов: серебро, золото, платину, рутений и некоторые другие. Они названы так потому, что практически не окисляются на воздухе даже при повышенной температуре и не разрушаются при действии на них растворов кислот и щелочей.

Физические свойства металлов.

С внешней стороны металлы, как известно, характеризуются прежде всего особым «металлическим» блеском, который обусловливается их способностью сильно отражать лучи света. Однако этот блеск наблюдается обыкновенно только в том случае, когда металл образует сплошную компактную массу. Правда, магний и алюминий сохраняют свой блеск, даже будучи превращенными в порошок, но большинство металлов в мелкораздробленном виде имеет черный или темно-серый цвет. Затем типичные металлы обладают высокой тепло- и электропроводностью, причем по способности проводить тепло и ток располагаются в одном и том же порядке: лучшие проводники - серебро и медь, худшие - свинец и ртуть. С повышением температуры электропроводность падает, при понижении температуры, наоборот, увеличивается.

Очень важным свойством металлов является их сравнительно легкая механическая деформируемость. Металлы пластичны, они хорошо куются, вытягиваются в проволоку, прокатываются в листы и т.п.

Характерные физические свойства металлов находятся в связи с особенностями их внутренней структуры. Согласно современным воззрениям, кристаллы металлов состоят из положительно заряженных ионов и свободных электронов, отщепившихся от соответствующих атомов. Весь кристалл можно себе представить в виде пространственной решетки, узлы которой заняты ионами, а в промежутках между ионами находятся легкоподвижные электроны. Эти электроны постоянно переходят от одних атомов к другим и вращаются вокруг ядра то одного, то другого атома. Так как электроны не связаны с определенными ионами, то уже под влиянием небольшой разности потенциалов они начинают перемещаться в определенном направлении, т.е. возникает электрический ток.

Наличием свободных электронов обусловливается и высокая теплопроводность металлов. Находясь в непрерывном движении, электроны постоянно сталкиваются с ионами и обмениваются с ними энергией. Поэтому колебания ионов, усилившиеся в данной части металла вследствие нагревания, сейчас же передаются соседним ионам, от них - следующим и т.д., и тепловое состояние металла быстро выравнивается; вся масса металла принимает одинаковую температуру.

По плотности металлы условно подразделяются на две большие группы: легкие металлы, плотность которых не больше 5 г/см 3 , и тяжелые металлы - все остальные. Плотность, а также температуры плавления некоторых металлов приведены в таблице №1.

Таблица №1

Плотность и температура плавления некоторых металлов.

Легкие металлы.

Алюминий

Тяжелые металлы

Марганец

Вольфрам

Частицы металлов, находящихся в твердом и жидком состоянии, связаны особым типом химической связи - так называемой металлической связью. Она определяется одновременным наличием обычных ковалентных связей между нейтральными атомами и кулоновским притяжением между ионами и свободными электронами. Таким образом, металлическая связь является свойством не отдельных частиц, а их агрегатов.

Химические свойства металлов.

Основным химическим свойством металлов является способность их атомов легко отдавать свои валентные электроны и переходить в положительно заряженные ионы. Типичные металлы никогда не присоединяют электронов; их ионы всегда заряжены положительно.

Легко отдавая при химических реакциях свои валентные электроны, типичные металлы являются энергичными восстановителями.

Способность к отдаче электронов проявляется у отдельных металлов далеко не в одинаковой степени. Чем легче металл отдает свои электроны, тем он активнее, тем энергичнее вступает во взаимодействие с другими веществами.

Опустим кусочек цинка в раствор какой-нибудь свинцовой соли. Цинк начинает растворяться, а из раствора выделяется свинец. Реакция выражается уравнением:

Zn + Pb(NO 3) 2 = Pb + Zn(NO 3) 2

Из уравнения следует, что эта реакция является типичной реакцией окисления-восстановления. Сущность ее сводится к тому, что атомы цинка отдают свои валентные электроны ионам двухвалентного свинца, тем самым превращаясь в ионы цинка, а ионы свинца восстанавливаются и выделяются в виде металлического свинца. Если поступить наоборот, то есть погрузить кусочек свинца в раствор цинковой соли, то никакой реакции не произойдет. Это показывает, что цинк более активен, чем свинец, что его атомы легче отдают, а ионы труднее присоединяют электроны, чем атомы и ионы свинца.

Вытеснение одних металлов из их соединений другими металлами впервые было подробно изучено русским ученым Бекетовым, расположившим металлы по их убывающей химической активности в так называемый «вытеснительный ряд». В настоящее время вытеснительный ряд Бекетова носит название ряда напряжений.

В таблице №2 представлены значения стандартных электродных потенциалов некоторых металлов. Символом Me + /Me обозначен металл Me, погруженный в раствор его соли. Стандартные потенциалы электродов, выступающих как восстановители по отношению к водороду, имеют знак «-», а знаком «+» отмечены стандартные потенциалы электродов, являющихся окислителями.

Таблица №2

Стандартные электродные потенциалы металлов.

Электрод

Электрод

Металлы, расположенные в порядке возрастания их стандартных электродных потенциалов, и образуют электрохимический ряд напряжений металлов: Li, Rb, K, Ba, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H, Sb, Bi, Cu, Hg, Ag, Pd, Pt, Au.

Ряд напряжений характеризует химические свойства металлов:

1. Чем меньше электродный потенциал металла, тем больше его восстановительная способность.

2. Каждый металл способен вытеснять(восстанавливать) из растворов солей те металлы, которые стоят в ряду напряжений после него.

3. Все металлы, имеющие отрицательный стандартный электродный потенциал, то есть находящиеся в ряду напряжений левее водорода, способны вытеснять его из растворов кислот.

Необходимо отметить, что представленный ряд характеризует поведение металлов и их солей только в водных растворах и при комнатной температуре. Кроме того, нужно иметь ввиду, что высокая электрохимическая активность металлов не всегда означает его высокую химическую активность. Например, ряд напряжений начинается литием, тогда как более активные в химическом отношении рубидий и калий находятся правее лития. Это связано с исключительно высокой энергией процесса гидратации ионов лития по сравнению с ионами других щелочных металлов.

Коррозия металлов.

Почти все металлы, приходя в соприкосновение с окружающей их газообразной или жидкой средой, более или менее быстро подвергаются с поверхности разрушению. Причиной его является химическое взаимодействие металлов с находящимися в воздухе газами, а также водой и растворенными в ней веществами.

Всякий процесс химического разрушения металлов под действием окружающей среды называют коррозией.

Проще всего протекает коррозия при соприкосновении металлов с газами. На поверхности металла образуются соответствующие соединения: оксиды, сернистые соединения, основные соли угольной кислоты, которые нередко покрывают поверхность плотным слоем, защищающим металл от дальнейшего воздействия тех же газов.

Иначе обстоит дело при соприкосновении металла с жидкой средой - водой и растворенными в ней веществами. Образующиеся при этом соединения могут растворяться, благодаря чему коррозия распространяется дальше вглубь металла. Кроме того, вода, содержащая растворенные вещества, является проводником электрического тока, вследствие чего постоянно возникают электрохимические процессы, которые являются одним из главных факторов, обуславливающих и ускоряющих коррозию.

Чистые металлы в большинстве случаев почти не подвергаются коррозии. Даже такой металл, как железо, в совершенно чистом виде почти не ржавеет. Но обыкновенные технические металлы всегда содержат различные примеси, что создает благоприятные условия для коррозии.

Убытки, причиняемые коррозией металлов, огромны. Вычислено, например, что вследствие коррозии ежегодно гибнет такое количество стали, которое равно приблизительно четверти всей мировой добычи его за год. Поэтому изучению процессов коррозии и отысканию наилучших средств ее предотвращения уделяется очень много внимания.

Способы борьбы с коррозией чрезвычайно разнообразны. Наиболее простой из них заключается в защите поверхности металла от непосредственного соприкосновения с окружающей средой путем покрытия масляной краской, лаком, эмалью или, наконец, тонким слоем другого металла. Особый интерес с теоретической точки зрения представляет покрытие одного металла другим.

К ним относятся: катодное покрытие, когда защищающий металл стоит в ряду напряжений правее защищающего (типичным примером может служить луженая, то есть покрытая оловом, сталь); анодное покрытие, например, покрытие стали цинком.

Для защиты от коррозии целесообразно покрывать поверхность металла слоем более активного металла, чем слоем менее активного. Однако другие соображения нередко заставляют применять также покрытия из менее активных металлов.

На практике чаще всего приходится принимать меры к защите стали как металла, особенно подверженного коррозии. Кроме цинка, из более активных металлов для этой цели иногда применяют кадмий, действующий подобно цинку. Из менее активных металлов для покрытия стали чаще всего используют олово, медь, никель.

Покрытые никелем стальные изделия имеют красивый вид, чем объясняется широкое распространение никелирования. При повреждении слоя никеля коррозия проходит менее интенсивно, чем при повреждении слоя меди (или олова), так как разность потенциалов для пары никель-железо гораздо меньше, чем для пары медь-железо.

Из других способов борьбы с коррозией существует еще способ протекторов, заключающийся в том, что защищаемый металлический объект приводится в контакт с большой поверхностью более активного металла. Так, в паровые котлы вводят листы цинка, находящиеся в контакте со стенками котла и образующие с ними гальваническую пару.

Понятие о сплавах.

Характерной особенностью металлов является их способность образовывать друг с другом или с неметаллами сплавы. Чтобы получить сплав, смесь металлов обычно подвергают плавлению, а затем охлаждают с различной скоростью, которая определяется природой компонентов и изменением характера их взаимодействия в зависимости от температуры. Иногда сплавы получают спеканием тонких порошков металлов, не прибегая к плавлению (порошковая металлургия). Итак сплавы - это продукты химического взаимодействия металлов.

Кристаллическая структура сплавов во многом подобна чистым металлам, которые, взаимодействуя друг с другом при плавлении и последующей кристаллизации, образуют: а) химические соединения, называемые интерметаллидами; б) твердые растворы; в) механическую смесь кристаллов компонентов.

Тот или иной тип взаимодействия определяется соотношением энергии взаимодействия разнородных и однородных частиц системы, то есть соотношением энергий взаимодействия атомов в чистых металлах и сплавах.

Современная техника использует огромное число сплавов, причем в подавляющем большинстве случаев они состоят не из двух, а из трех, четырех и большего числа металлов. Интересно, что свойства сплавов часто резко отличаются от свойств индивидуальных металлов, которыми они образованы. Так, сплав, содержащий 50% висмута, 25% свинца, 12,5% олова и 12,5% кадмия, плавится всего при 60,5 градусах Цельсия, в то время как компоненты сплава имеют соответственно температуры плавления 271, 327, 232 и 321 градус Цельсия. Твердость оловянной бронзы (90% меди и 10% олова) втрое больше, чем у чистой меди, а коэффициент линейного расширения сплавов железа и никеля в 10 раз меньше, чем у чистых компонентов.

Однако некоторые примеси ухудшают качество металлов и сплавов. Известно, например, что чугун (сплав железа и углерода) не обладает той прочностью и твердостью, которые характерны для стали. Помимо углерода, на свойства стали влияют добавки серы и фосфора, увеличивающие ее хрупкость.

Среди свойств сплавов наиболее важными для практического применения являются жаропрочность, коррозионная стойкость, механическая прочность и др. Для авиации большое значение имеют легкие сплавы на основе магния, титана или алюминия, для металлообрабатывающей промышленности - специальные сплавы, содержащие вольфрам, кобальт, никель. В электронной технике применяют сплавы, основным компонентом которых является медь. Сверхмощные магниты удалось получить, используя продукты взаимодействия кобальта, самария и других редкоземельных элементов, а сверхпроводящие при низких температурах сплавы - на основе интерметаллидов, образуемых ниобием с оловом и др.

Способы получения металлов.

Огромное большинство металлов находится в природе в виде соединений с другими элементами.

Только немногие металлы встречаются в свободном состоянии, и тогда они называются самородными. Золото и платина встречаются почти исключительно в самородном виде, серебро и медь - отчасти в самородном виде; иногда попадаются также самородные ртуть, олово и некоторые другие металлы.

Добывание золота и платины производится или посредством механического отделения их от той породы, в которой они заключены, например промывкой воды, или путем извлечения их из породы различными реагентами с последующим выделением металла из раствора. Все остальные металлы добываются химической переработкой их природных соединений.

Минералы и горные породы, содержащие соединения металлов и пригодные для получения этих металлов заводским путем, носят название руд. Главными рудами являются оксиды, сульфиды и карбонаты металлов.

Важнейший способ получения металлов из руд основан на восстановлении их оксидов углем.

Если, например, смешать красную медную руду (куприт) Cu 2 O с углем и подвергнуть сильному накаливанию, то уголь, восстанавливая медь, превратится в оксид углерода(II), а медь выделится в расплавленном состоянии:

Cu 2 O + C = 2Cu + CO

Подобным же образом производится выплавка чугуна их железных руд, получение олова из оловянного камня SnO 2 и восстановление других металлов из оксидов.

При переработке сернистых руд сначала переводят сернистые соединения в кислородные путем обжигания в особых печах, а затем уже восстанавливают полученные оксиды углем. Например:

2ZnS + 3O 2 = 2ZnO + 2SO 2

ZnO + C = Zn + CO

В тех случаях, когда руда представляет собой соль угольной кислоты, ее можно непосредственно восстанавливать углем, как и оксиды, так как при нагревании карбонаты распадаются на оксид металла и двуокись углерода. Например:

ZnCO 3 = ZnO + CO 2

Обычно руды, кроме химического соединения данного металла, содержат еще много примесей в виде песка, глины, известняка, которые очень трудно плавятся. Чтобы облегчить выплавку металла, к руде примешивают различные вещества, образующие с примесями легкоплавкие соединения - шлаки. Такие вещества называются флюсами. Если примесь состоит из известняка, то в качестве флюса употребляют песок, образующий с известняком силикат кальция. Наоборот, в случае большого количества песка флюсом служит известняк.

Во многих рудах количество примесей (пустой породы) так велико, что непосредственная выплавка металлов из этих руд является экономически невыгодной. Такие руды предварительно «обогащают», то есть удаляют из них часть примесей. Особенно широким распространением пользуется флотационный способ обогащения руд (флотация), основанный на различной смачиваемости чистой руды и пустой породы.

Техника флотационного способа очень проста и в основном сводится к следующему. Руду, состоящую, например, из сернистого металла и силикатной пустой породы, тонко измельчают и заливают в больших чанах водой. К воде прибавляют какое-нибудь малополярное органическое вещество, способствующее образованию устойчивой пены при взбалтывании воды, и небольшое количество специального реагента, так называемого «коллектора», который хорошо адсорбируется поверхностью флотируемого минерала и делает ее неспособной смачиваться водой. После этого через смесь снизу пропускают сильную струю воздуха, перемешивающую руду с водой и прибавленными веществами, причем пузырьки воздуха окружаются тонкими масляными пленками и образуют пену. В процессе перемешивания частицы флотируемого минерала покрываются слоем адсорбированных молекул коллектора, прилипают к пузырькам продуваемого воздуха, поднимаются вместе с ними кверху и остаются в пене; частицы же пустой породы, смачивающиеся водой, оседают на дно. Пену собирают и отжимают, получая руду с значительно большим содержанием металла.

Для восстановления некоторых металлов из их оксидов применяют вместо угля водород, кремний, алюминий, магний и другие элементы.

Процесс восстановления металла из его оксида с помощью другого металла называется металлотермией. Если, в частности, в качестве восстановителя применяется алюминий, то процесс носит название алюминотермии.

Очень важным способом получения металлов является также электролиз. Некоторые наиболее активные металлы получаются исключительно путем электролиза, так как все другие средства оказываются недостаточно энергичными для восстановления их ионов.

НЕМЕТАЛЛЫ

Положение неметаллических элементов в периодической системе химических элементов. Нахождение в природе. Общие химический и физические свойства.

Неметаллических элементов по сравнению к металлическими элементами относительно немного. Их размещение в периодической системе химических элементов Д.И. Менделеева отражено в таблице №1.

Размещение неметаллических элементов в периодической системе по группам

VIII (благородные газы)

Таблица №1.

Как видно из таблицы №1 неметаллические элементы в основном расположены в правой верхней части периодической системы. Так как в периодах слева направо у атомов элементов увеличивается заряды ядер и уменьшаются атомные радиусы, а в группах сверху вниз атомные радиусы также возрастают, то понятно, почему атому неметаллов сильнее, чем атомы металлов, притягивают наружные электроны. В связи с этим у неметаллов преобладают окислительные свойства. Особенно сильные окислительные свойства, т.е. способность присоединять электроны, проявляют неметаллы, находящиеся во 2-ом и 3-м периодах VI-VII групп. Самым сильным окислителем является фтор. В соответствии с численными значениями относительных электроотрицательностей окислительные способности неметаллов увеличивается в следующем порядке:

Si, B, H, P, C, S, I, N, Cl, O, F.

Следовательно, энергичнее всего взаимодействует с водородом и металлами фтор:

H3 + F2  2HF

Менее энергично реагирует кислород:

2H3 +O2  2H3 О

Фтор - самый типичный неметалл, которому нехарактерны восстановительные свойства, т.е. способность отдавать электроны в химических реакциях.

Кислород же, судя по его соединениям с фтором, может проявлять и положительную степень окисления, т.е. являться восстановителем.

Все остальные неметаллы проявляют восстановительные свойства. Причем эти свойства постепенно возрастают от кислорода к кремнию: O, Cl, N, I, S, C, P, H, B, Si. Так, например, хлор непосредственно с кислородом не соединяется, но косвенным путем можно получить его оксиды (Cl2 O, ClO2 , Cl2O2), в которых хлор проявляет положительную степень окисления. Азот при высокой температуре непосредственно соединяется с кислородом и, следовательно, проявляет восстановительные свойства. Еще легче с кислородом реагирует сера: она проявляет и окислительные свойства.

Перейдем к рассмотрению строения молекул неметаллов. Неметаллы образуют как одноатомные, так и двухатомные молекулы.

К одноатомным неметаллам относятся инертные газы, практически не реагирующие даже с самыми активными веществами. Инертные газы расположены в VIII группе Периодической системы, а химические формулы соответствующих простых веществ следующие: He, Ne, Ar, Kr, Xe и Rn.

Некоторые неметаллы образуют двухатомные молекулы. Это H3, F2, Cl2, Br2, I2 (элементы VII группы Периодической системы), а также кислород O2 и азот N2. Из трехатомных молекул состоит газ озон (O3).

Для веществ неметаллов, находящихся в твердом состоянии, составить химическую формулу довольно сложно. Атомы углерода в графите соединены друг с другом различным образом. Выделить отдельную молекулу в приведенных структурах затруднительно. При написании химических формул таких веществ, как и в случае с металлами, вводится допущение, что такие вещества состоят только из атомов. Химические формулы, при этом, записываются без индексов - C, Si, S и т.д.

Такие простые вещества, как озон и кислород, имеющие одинаковый качественный состав (оба состоят из одного и того же элемента - кислорода), но различающиеся по числу атомов в молекуле, имеют различные свойства. Так, кислород запаха не имеет, в то время как озон обладает резким запахом, который мы ощущаем во время грозы. Свойства твердых неметаллов, графита и алмаза, имеющих также одинаковый качественный состав, но разное строение, резко отличаются (графит хрупкий, алмаз твердый). Таким образом, свойства вещества определяются не только его качественным составом, но и тем, сколько атомов содержится в молекуле вещества и как они связаны между собой.

Неметаллы в виде простых тел находятся в твердом или газообразном состоянии (исключая бром - жидкость). Они не имеют физических свойств, присущих металлам. Твердые неметаллы не обладают характерным для металлов блеском, они обычно хрупки, плохо проводят электрический ток и тепло (за исключением графита).

Общие химические свойства неметаллов.

Оксиды неметаллов относят к кислотным оксидам, которым соответствуют кислоты. С водородом неметаллы образуют газообразные соединения (например HCl, H3S, NH4). Водные растворы некоторых из них (например, галогеноводородов) - сильные кислоты. С металлами типичные неметаллы дают соединения с ионной связью (например, NaCl). Неметаллы могут при определенных условиях между собой реагировать, образуя соединения с ковалентной полярной (H3O, HCl) и неполярной связями (CO2).

С водородом неметаллы образуют летучие соединения, как, например, фтороводород HF, сероводород H3S, аммиак NH4, метан CH5. При растворении в воде водородные соединения галогенов, серы, селена и теллура образуют кислоты той же формулы, что и сами водородные соединения: HF, HCl, HCl, HBr, HI, H3S, H3Se, H3Te.

При растворении в воде аммиака образуются аммиачная вода, обычно обозначаемая формулой NH5OH и называемая гидроксидом аммония. Ее также обозначают формулой NH4 H3O и называют гидратом аммиака.

С кислородом неметаллы образуют кислотные оксиды. В одних оксидах они проявляют максимальную степень окисления, равную номеру группы (например, SO2, N2O5), а других - более низкую (например, SO2, N2O3). Кислотным оксидам соответствуют кислоты, причем из двух кислородных кислот одного неметалла сильнее та, в которой он проявляет более высокую степень окисления. Например, азотная кислота HNO3 сильнее азотистой HNO2, а серная кислотаH3SO4 сильнее сернистой H3SO3.

Строение и свойства простых веществ - неметаллов.

Самые типичные неметаллы имеют молекулярное строение, а менее типичные - немолекулярное. Этим и объясняется отличие их свойств. Наглядно это отражено в схеме №2.

Простые вещества

С немолекулярным строением

С молекулярным строением

C, B, Si

F 2 , O 2 , Cl 2 , Br 2 , N 2 , I 2 , S 8

У этих неметаллов атомные кристаллические решетки , поэтому они обладают большой твердостью и очень высокими температурами плавления.

У этих неметаллов в твердом состоянии молекулярные кристаллические решетки . При обычных условиях это газы, жидкости или твердые вещества с низкими температурами плавления.

Таблица №2

Кристаллический бор В (как и кристаллический кремний) обладает очень высокой температурой плавления (2075°С) и большой твердостью. Электрическая проводимость бора с повышением температуры сильно увеличивается, что дает возможность широко применять его в полупроводниковой технике. Добавка бора к стали и к сплавам алюминия, меди, никеля и др. улучшает их механические свойства.

Бориды (соединения бора с некоторыми металлами, например с титаном: TiB, TiB2) необходимы при изготовлении деталей реактивных двигателей, лопаток газовых турбин.

Как видно из схемы №2, углерод С, кремний Si, бор В имеют сходное строение и обладают некоторыми общими свойствами. Как простые вещества они встречаются в двух видоизменениях - в кристаллическом и аморфном. Кристаллические видоизменения этих элементов очень твердые, с высокими температурами плавления. Кристаллический кремний обладает полупроводниковыми свойствами.

Все эти элементы образуют соединения с металлами - карбиды, силициды и бориды (CaC2, Al4C3, Fe3C, Mg2Si, TiB, TiB2). Некоторые из них обладают большей твердостью, например Fe3C, TiB. Карбид кальция используется для получения ацетилена.

Если сравнить расположение электронов по орбиталям ф атомах фтора, хлора и других галогенов, то можно судить и об их отличительных свойствах. У атома фтора свободных орбиталей нет. Поэтому атомы фтора могут проявить только валентность I и степень окисления - 1. В атомах других галогенов, например в атоме хлора, на том же энергетическом уровне имеются свободные d-орбитали. Благодаря этому распаривание электронов может произойти тремя разными путями.

В первом случае хлор может проявить степень окисления +3 и образовать хлористую кислоту HClO2, которой соответствуют соли - хлориты, например хлорит калия KClO2.

Во втором случае хлор может образовать соединения, в которых степень окисления хлора +5. К таким соединениям относятся хлороноватая кислота HClO3 и ее соли - хлораты, например хлорат калия КClO3 (бертолетова соль).

В третьем случае хлор проявляет степень окисления +7, например в хлорной кислоте HClO4 и в ее солях - перхлоратах, например в перхлорате калия КClO4.

Кислородные и водородные соединения неметаллов. Краткая характеристика их свойств.

С кислородом неметаллы образуют кислотные оксиды. В одних оксидах они проявляют максимальную степень окисления, равную номеру группы (например, SO2, N2O5), а других - более низкую (например, SO2, N2O3). Кислотным оксидам соответствуют кислоты, причем из двух кислородных кислот одного неметалла сильнее та, в которой он проявляет более высокую степень окисления. Например, азотная кислота HNO3 сильнее азотистой HNO2, а серная кислота H3SO4 сильнее сернистой H3SO3.

Характеристики кислородных соединений неметалов:

    Свойства высших оксидов (т.е. оксидов, в состав которых входит элемент данной группы с высшей степенью окисления) в периодах слева направо постепенно изменяются от основных к кислотным.

    В группах сверху вниз кислотные свойства высших оксидов постепенно ослабевают. Об этом можно судить по свойствам кислот, соответствующих этим оксидам.

    Возрастание кислотных свойств высших оксидов соответствующих элементов в периодах слева направо объясняется постепенным возрастанием положительного заряда ионов этих элементов.

    В главных подгруппах периодической системы химических элементов в направлении сверху вниз кислотные свойства высших оксидов неметаллов уменьшаются.

Общие формулы водородных соединений по группам периодической системы химических элементов приведены в таблице №3.

Таблица №3.

С металлами водород образует (за некоторым исключением) нелетучие соединения, которые являются твердыми веществами немолекулярного строения. Поэтому их температуры плавления сравнительно высоки.

С неметаллами водород образует летучие соединения молекулярного строения. В обычных условиях это газы или летучие жидкости.

В периодах слева направо кислотные свойства летучих водородных соединений неметаллов в водных растворах усиливается. Это объясняется тем, что ионы кислорода имеют свободные электронные пары, а ионы водорода - свободную орбиталь, то происходит процесс, котроый выглядит следующим образом:

H3O + HF  H4O + F

Фтороводород в водном растворе отщепляет положительные ионы водорода, т.е. проявляет кислотные свойства. Этому процессу способствует и другое обстоятельство: ион кислорода имеет неподеленную электронную пару, а ион водорода - свободную орбиталь, благодаря чему образуется донорно-акцепторная связь.

При растворении аммиака в воде происходит противоположный процесс. А так как ионы азота имеют неподеленную электронную пару, а ионы водорода - свободную орбиталь, возникает дополнительная связь и образуются ионы аммония NH5+ и гидроксид-ионы ОН-. В результате раствор приобретает основные свойства. Этот процесс можно выразить формулой:

H3O + NH4  NH5 + OH

Молекулы аммиака в водном растворе присоединяют положительные ионы водорода, т.е. аммиак проявляет основные свойства.

Теперь рассмотрим, почему водородное соединение фтора - фтороводород HF - в водном растворе является кислотой, но более слабой, чем хлороводородная. Это объясняется тем, что радиусы ионов фтора значительно меньше, чем ионов хлора. Поэтому ионы фтора гораздо сильнее притягивают к себе ионы водорода, чем ионы хлора. В связи с этим степень диссоциации фтороводородной кислоты значительно меньше, чем соляной кислоты, т.е. фтороводородная кислота слабее соляной кислоты.

Из приведенных примеров можно сделать следующие общие выводы:

    В периодах слева направо у ионов элементов положительный заряд увеличивается. В связи с этим кислотные свойства летучих водородных соединений элементов в водных растворах усиливаются.

    В группах сверху вниз отрицательно заряженные анионы все слабее притягивают положительно заряженные ионы водорода Н+. В связи с этим облегчается процесс отщепления ионов водорода Н+ и кислотные свойства водородных соединений увеличиваются.

    Водородные соединения неметаллов, обладающие в водных растворах кислотными свойствами, реагируют со щелочами. Водородные же соединения неметаллов, обладающие в водных растворах основными свойствами, реагируют с кислотами.

    Окислительная активность водородных соединений неметаллов в группах сверху вниз сильно увеличивается. Например, окислить фтор из водородного соединения HF химическим путем нельзя, окислить же хлор из водородного соединения HCl можно различными окислителями. Это объясняется тем, что в группах сверху вниз резко возрастают атомные радиусы, в связи с чем отдача электронов облегчается.

    Тогда как у неметаллов таких электронов много (5-8). Чистые химические элементы металлов (например, железо... входить несколько элементов-металлов , часто с примесью заметных количеств элементов-неметаллов . Такие вещества...

  1. Теоретическое материаловедение. Строение и свойства чистых металлов

    Конспект >> Химия

    Изучающая наиболее важные свойства металлов и неметаллов в зависимости от их... делятся, как известно, на металлы и неметаллы . Металлы расположены в левой части Периодической... как правило 1-2), поэтому металлы , вступая в связь с неметаллами , легко отдают свои...

  2. Общая характеристика металлов и сплавов

    Реферат >> Промышленность, производство

    Te - промежуточными между металлами и неметаллами , иногда их называют полуметаллами... 85) относятся к металлам , а правее - в основном, к неметаллам . Эта граница недостаточно четко... . КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ МЕТАЛЛОВ Общее свойство металлов и сплавов - ...

  3. Металлы (5)

    Реферат >> Химия

    Восстановления их ионов. Химические свойства металлов I. Реакции с неметаллами 1) С кислородом: 2Mg0 + O2 2Mg ... . Железо является достаточно хим.активным металлом . Взаимодействие с неметаллами . При нагревание железо реагирует...