Общая химия. Неорганическая химия

Классификацию химических реакций в неорганической и органической химии осуществляют на основании различных классифицирующих признаков, сведения о которых приведены в таблице ниже.

По изменению степени окисления элементов

Первый признак классификации — по изменению степени окисления элементов, образующих реагенты и продукты.
а) окислительно-восстановительные
б) без изменения степени окисления
Окислительно-восстановительными называют реакции, сопровождающиеся изменением степеней окисления химических элементов, входящих в состав реагентов. К окислительно-восстановительным в неорганической химии относятся все реакции замещения и те реакции разло­жения и соединения, в которых участвует хотя бы одно прос­тое вещество. К реакциям, идущим без изменения степе­ней окисления элементов, образующих реагенты и продукты реакции, относятся все реакции обмена.

По числу и составу реагентов и продуктов

Химические реакции классифицируются по характеру процесса, т.е по числу и составу реагентов и продуктов.

Реакциями соединения называют химические реакции, в результате которых сложные молекулы получаются из нескольких более простых, например:
4Li + O 2 = 2Li 2 O

Реакциями разложения называют химические реакции, в результате которых простые молекулы получаются из более сложных, например:
CaCO 3 = CaO + CO 2

Реакции разложения можно рассматривать как процессы, обратные соединению.

Реакциями замещения называют химические реакции, в результате которых атом или группа атомов в молекуле вещества замещается на другой атом или группу атомов, например:
Fe + 2HCl = FeCl 2 + H 2 

Их отличительный признак - взаимодействие простого вещества со сложным. Такие реакции есть и в органической химии.
Однако понятие «замещение» в органике шире, чем в неорганической химии. Если в молекуле исходного вещества какой-либо атом или функциональная группа заменяются на другой атом или группу, это тоже реакции замещения, хотя с точки зрения неорганической химии процесс выглядит как реакция обмена.
— обмена (в том числе и нейтрализации).
Реакциями обмена называют химические реакции, протекающие без изменения степеней окисления элементов и приводящие к обмену составных частей реагентов, например:
AgNO 3 + KBr = AgBr + KNO 3

По возможности протекать в обратном направлении

По возможности протекать в обратном направлении – обратимые и необратимые.

Обратимыми называют химические реакции, протекающие при данной температуре одновременно в двух противоположных направлениях с соизмеримыми скоростями. При записи уравнений таких реакций знак равенства заменяют противоположно направленными стрелками. Простейшим примером обратимой реакции является синтез аммиака взаимодействием азота и водорода:

N 2 +3H 2 ↔2NH 3

Необратимыми называют реакции, протекающие только в прямом направлении, в результате которых образуются продукты, не взаимодействующие между собой. К необратимым относят химические реакции, в результате которых образуются малодиссоциированные соединения, происходит выделение большого количества энергии, а также те, в которых конечные продукты уходят из сферы реакции в газообразном виде или в виде осадка, например:

HCl + NaOH = NaCl + H2O

2Ca + O 2 = 2CaO

BaBr 2 + Na 2 SO 4 = BaSO 4 ↓ + 2NaBr

По тепловому эффекту

Экзотермическими называют химические реакции, идущие с выделением теплоты. Условное обозначение изменения энтальпии (теплосодержания) ΔH, а теплового эффекта реакции Q. Для экзотермических реакций Q > 0, а ΔH < 0.

Эндотермическими называют химические реакции, идущие с поглощением теплоты. Для эндотермических реакций Q < 0, а ΔH > 0.

Реакции соединения как правило будут реак­циями экзотермическими, а реакции разложения - эндотер­мическими. Редкое исключение - реакция азота с кислородом - эндотермиче­ская:
N2 + О2 → 2NO – Q

По фазе

Гомогенными называют реакции, протекающие в однородной среде (однородные вещества, в одной фазе, например г-г, реакции в растворах).

Гетерогенными называют реакции, протекающие в неоднородной среде, на поверхности соприкосновения реагирующих веществ, находящихся в разных фазах, например, твердой и газообразной, жидкой и газообразной, в двух несмешивающихся жидкостях.

По использованию катализатора

Катализатор – вещество ускоряющее химическую реакцию.

Каталитические реакции протекают только в присутствии катализатора (в том числе и ферментативные).

Некаталитические реакции идут в отсутствие катализатора.

По типу разрыва связей

По типу разрыва химической связи в исходной молекуле различают гомолитические и гетеролитические реакции.

Гомолитическими называются реакции, при которых в результате разрыва связей образуются частицы, имеющие неспаренный электрон - свободные радикалы.

Гетеролитическими называют реакции, протекающие через образование ионных частиц - катионов и анионов.

  • гомолитические (равный разрыв, каждый атом по 1 электрону получает)
  • гетеролитический (неравный разрыв – одному достается пара электронов)

Радикальными (цепными) называют химические реакции с участием радикалов, например:

CH 4 + Cl 2 hv →CH 3 Cl + HCl

Ионными называют химические реакции, протекающие с участием ионов, например:

KCl + AgNO 3 = KNO 3 + AgCl↓

Электрофильными называют гетеролитические реакции органических соединений с электрофилами - частицами, несущими целый или дробный положительный заряд. Они подразделяются на реакции электрофильного замещения и электрофильного присоединения, например:

C 6 H 6 + Cl 2 FeCl3 → C 6 H 5 Cl + HCl

H 2 C =CH 2 + Br 2 → BrCH 2 –CH 2 Br

Нуклеофильными называют гетеролитические реакции органических соединений с нуклеофилами - частицами, несущими целый или дробный отрицательный заряд. Они подразделяются на реакции нуклеофильного замещения и нуклеофильного присоединения, например:

CH 3 Br + NaOH → CH 3 OH + NaBr

CH 3 C(O)H + C 2 H 5 OH → CH 3 CH(OC 2 H 5) 2 + H 2 O

Классификация органических реакций

Классификация органических реакций приведена в таблице:

УДК 546(075) ББК 24.1 я 7 0-75

Составители: Клименко B.I канд. техн. наук, доц. Володчснко А Н., канд. техн. наук, доц. Павленко В И., д-р техн. наук, проф.

Рецензент Гикунова И.В., канд. техн. наук, доц.

Основы неорганической химии: Методические указания для студентов 0-75 дневной формы обучения. - Белгород: Изд-во БелГТАСМ, 2001. - 54 с.

В методических указаниях подробно, с учетом основных разделов общей химии, рассмотрены свойства важнейших классов неорганических веществ.Данная работа содержит обобщения, схемы, таблицы, примеры, что будет способствовать лучшему усвоению обширного фактического материала. Особое внимание как в теоретической, гак и в практической части уделено связи неорганической химии с основными понятиями общей химии.

Книга предназначена для студентов первого курса всех специальностей.

УДК 546(075) ББК 24.1 я 7

© Белгородская государственная технологическая академия строительных материалов (БелГТАСМ), 2001

ВВЕДЕНИЕ

Познание основ любой науки и стоящих перед нею проблем - это тот минимум, который должен знать любой человек, чтобы свободно ориенти­ роваться в окружающем мире. Важную роль в этом процессе играет есте­ ствознание. Естествознание - совокупность наук о природе. Все науки делятся на точные (естественные) и изящные (гуманитарные). Первые изучают законы развития материального мира, вторые - законы развития и проявления человеческого разума. В представленной работе мы ознако­ мимся с основами одной из естественных наук 7 неорганической химии. Успешное изучение неорганической химии возможно лишь при условии знания состава и свойств основных классов неорганических соединений. Зная особенности классов соединений, можно характеризовать свойства их отдельных представителей.

При изучении любой науки, и химии в том числе, всегда встает во­ прос: с чего начать? С изучения фактического материала: описания свойств соединений, указания условий их существования, перечисления реакций, в которые они вступают; на этой базе выводят законы, управ­ ляющие поведением веществ или, наоборот, сначала приводят законы, а затем на их основе обсуждают свойства веществ. В данной книге мы будем использовать оба приема изложения фактического материала.

1. ОСНОВНЫЕ ПОНЯТИЯ НЕОРГАНИЧЕСКОЙ ХИМИИ

Что же составляет предмет химии, что изучает эта наука? Су­ ществует несколько определений химии.

С одной стороны, химия - это наука о веществах, их свойствах и превращениях. С другой стороны, химия - одна из естественных наук, изучающих химическую форму движения материи. Химическая форма движения материи - это процессы ассоциации атомов в молекулы и диссо­ циации молекул. Химическую организацию материи можно представить следующей схемой (рис. 1 ).

Рис. 1. Химическая организация материи

Материя - это объективная реальность, данная человеку в его ощущениях, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от нас. Материя как объективная реальность существует в двух формах: в форме вещества и в форме поля.

Поле (гравитационное, электромагнитное, внутриядерных сил) - это форма существования материи, которая характеризуется и проявляется прежде всего энергией, а не массой, хотя и обладает последней.Энергия - это количественная мера движения, выражающая способность материаль­ ных объектов совершать работу.

Масса (лат. massa - глыба, ком, кусок) - физическая величина, одна из основных характеристик материи, определяющая ее инерционные и гравитационные свойства.

Атом - это низший уровень химической организации материи.Атом - наименьшая частица элемента, сохраняющая его свойства. Он состоит из положительно заряженного ядра и отрицательно заряженных электронов; в целом атом элекгронейтрален.Химический элемент - это вид атомов с одинаковым зарядом ядра. Известно 109 элементов, из них 90 существует в природе.

Молекула - наименьшая частица вещества, обладающая химиче­ скими свойствами этого вещества.

Число химических элементов ограничено, а их комбинации дают все

многообразие веществ.

Что же такое вещество?

В широком смысле вещество - это конкретный вид материи, обла­ дающий массой покоя и характеризующийся при данных условиях опре­ деленными физическими и химическими свойствами. Известно около 600 тысяч неорганических веществ и около 5 млн органических веществ.

В более узком смысле вещество - это определенная совокупность атомных и молекулярных частиц, их ассоциатов и агрегатов, находя­ щихся в любом из трех агрегатных состояний.

Вещество достаточно полно определяется тремя признаками: 1 ) занимает часть пространства;2 ) обладает массой покоя;

3) построено из элементарных частиц.

Все вещества можно разделить на простые и сложные.

менты образуют не одно, а несколько простых веществ. Такое явле­ ние называется аллотропией, а каждые из этих простых веществ - аллотропным видоизменением (модификацией) данного элемента. Ал­ лотропия наблюдается у углерода, кислорода, серы, фосфора и ряда других элементов. Так, графит, алмаз, карбин и фуллерены - аллотроп­ ные видоизменения химического элемента углерода; красный, белый, черный фосфор - аллотропные видоизменения химического элемента фосфора. Простых веществ известно около 400.

Простое вещество является формой существования химических

элементов в свободном состоянии

Простые вещества делятся на металлы и неметаллы. Принадлежность химического элемента к металлам или неметаллам можно определить, пользуясь периодической системой элементов Д.И. Менделеева. Прежде чем это сделать, давайте немного вспомним строение периодической си­ стемы.

1.1. Периодический закон и периодическая система Д.И.Менделеева

Периодическая система элементов - это графическое выражение периодического закона, открытого Д.И.Менделеевым 18 февраля 1869 г. Периодический закон звучит так: свойства простых веществ, а также свойства соединений, находятся в периодической зависимости от заряда ядра атомов элемента.

Существует более 400 вариантов изображения периодической си­ стемы. Наиболее распространены клеточные варианты (короткий вариант - 8 -клеточный и длинные варианты - 18- и 32-клеточные). Короткопе­ риодная периодическая система состоит из 7 периодов и8 групп.

Элементы, имеющие аналогичное строение внешнего энергетического уровня, объединяются в группы. Различают главные (А) и побочные (В)

группы. Главные группы составляют s- и p-элементы, а побочные -d- элементы.

Период представляет собой последовательный ряд элементов, в ато­ мах которых происходит заполнение одинакового числа электронных слоев одного и того же энергетического уровня. Различие в последовательности заполнения электронных слоев объясняет причину различной длины пе­ риодов. В связи с этим периоды содержат разное количество элементов: 1-й период - 2 элемента; 2-й и 3-й периоды - по8 элементов; 4-й и 5-й

периоды - по 18 элементов и 6 -й период - 32 элемента.

Элементы малых периодов (2 -й и 3-й) выделяют в подгруппу типиче­ ских элементов. Так как уd- и /элементов заполняются 2-й и 3-й снаружи элгк-

лочке их атомов, а следовательно, большая способность к присоедине­ нию электронов (окислительная способность), передаваемая высокими значениями их электроотрицательности. Элементы с неметаллическими свойствами занимают правый верхний угол периодической системы

Д.И.Менделеева. Неметаллы могут бьггь газообразными (F2 , О2 , CI2 ), твердыми (В, С, Si, S) и жидкими (Вг2).

Элемент водород занимает особое место в периодической си­

стеме и не имеет химических аналогов. Водород проявляет металлические

и неметаллические свойства, и поэтому в периодической системе его

помещают одновременно в IA и VIIA группу.

В силу большого своеобразия химических свойств выделяют от­

дельно благородные газы (аэрогены) - элементы VIIIA группы

дической

системы. Исследования последних лет позволяют тем не ме­

нее причислить некоторые из них (Кг, Хе, Rn) к неметаллам.

Характерным свойством металлов является то, что валентные

троны слабо связаны с конкретным атомом, и

внутри каждого

существует так называемый электронный

Поэтому все

обладают

высокой электропроводностью,

теплопроводностью

тичностью. Хотя есть и хрупкие металлы (цинк, сурьма, висмут). Ме­ таллы проявляют, как правило, восстановительные свойства.

Сложные вещества (химические соединения) - это вещества, мо­ лекулы которых образованы атомами различных химических элемен­ тов (гетероатомные или гетероядерные молекулы). Например, С 02, КОН. Известно более 10 млн сложных веществ.

Высшей формой химической организации материи являются ассоциаты и агрегаты. Ассоциаты - это объединения простых молекул или ионов в более сложные, не вызывающие изменения химической при­ роды вещества. Ассоциаты существуют главным образом в жидком и газообразном состоянии, а агрегаты-в твердом.

Смеси - системы, состоящие из нескольких равномерно распреде­ ленных соединений, связанных между собой постоянными соотношения­ ми и не взаимодействующие друг с другом.

1.2. Валентность и степень окисления

Составление эмпирических формул и образование названий хи­ мических соединений основано на знании и правильном использовании понятий степень окисления и валентность.

Степень окисления - эго условный заряд элемента в соединении, вычисленный из предположения, что соединение состоит из ионов. Эго величина условная, формальная, так как чисто ионных соедине­ ний практически нет. Степень окисления по абсолютной величине может быть целым или дробным числом; а по заряду может быть положительной, отрицательной и равной нулю величиной.

Валентность - это величина, определяемая количеством неспарен­ ных электронов на внешнем энергетическом уровне или числом свобод­ ных атомных орбиталей, способных участвовать в образовании химиче­ ских связей.

Некоторые правила определения степеней окисления химических элементов

1. Степень окисления химического элемента в простом веществе

равна 0 .

2. Сумма степеней окисления атомов в молекуле (ионе) равна 0

(заряду иона).

3. Элементы I-III А групп имеют положительную степень окис­ ления, соответствующую номеру группы, в которой находится данный элемент.

4. Элементы IV -V IIА групп, кроме положительной степени окис­ ления, соответствующей номеру группы; и отрицательной степени окис­ ления, соответствующей разнице между номером группы и числом8 , имеют промежуточную степень окисления, равную разности между номером группы и числом2 (табл.1 ).

Таблица 1

Степени окисления элементов IV -V IIА подгрупп

Степень окисления

Промежуточная

5. Степень окисления водорода равна +1, если в соединении есть хотя бы один неметалл; - 1 в соединениях с металлами (гидридах); 0 в Н2.

Гидриды некоторых элементов

ВеН2

NaH MgH2 АШ3

СаН2

GaH3

GeH4

AsH3

SrH2

InH3

SnH4

SbH3

ВаН2

Соединения Н

Промежуточные

Соединения i t

соединения

6 . Степень окисления кислорода, как правило, равна -2, за ис­ ключением пероксидов (-1), надпероксидов (-1/2), озонидов (-1/3), озона (+4), фторида кислорода (+2).

7. Степень окисления фтора во всех соединениях, кроме F2> равна -1. В соединениях с фтором реализуются высшие формы окисления мно­ гих химических элементов (BiF5, SF6, IF?, OsFg).

8 . В периодах орбитальные радиусы атомов с возрастанием по­ рядкового номера уменьшаются, а энергия ионизации возрастает. При этом усиливаются кислотные и окислительные свойства; высшие сте­

пени окисления элементов становятся менее устойчивыми.

9. Для элементов нечетных групп периодической системы харак­ терны нечетные, а для элементов четных групп - четные степени

окисления.

10. В главных подгруппах с возрастанием порядкового номера элемента размеры атомов в общем увеличиваются, а энергия иониза­ ции - уменьшается. Соответственно усиливаются основные и ослабевают окислительные свойства. В подгруппах ^-элементов с увеличением порядкового номера участие «.^-электронов в образовании связей

уменьшается, а следовательно, уменьшается

абсолютное значение степе­

ни окисления (табл. 2 ).

Таблица 2

Значения степеней окисления элементов VA подгруппы

Степень окисления

Li, К, Fe, Ва

Кислотные С 02, S 0 3

Неметаллы

Амфотсрные ZnO ВеО

Амфигены

Двойные Fe304

Be, AL Zn

яолеобразующие

Аэрогены

СО, NO, SiO, N20

Основания Ва(ОН)2

Кислоты HNO3

ГИДРОКСИДЫ

Амфолиты Zti(OH)2

Средние КагСОз,

Кислые МаНКЮз,

Основные (СиОН)гСОз, 4--------

Двойные CaMg(COs)2

Смешанные СаСГСЮ

> w h o w J 3 w »

Рис, 2. Схема важнейших классов неорганических веществ

Химические реакции – это процессы, в результате которых из одних веществ образуются другие, отличающиеся от них по составу и (или) строению.

Классификация реакций:

I. По числу и составу реагирующих веществ и продуктов реакции:

1) Реакции, идущие без изменения состава вещества:

В неорганической химии это реакции превращения одних аллотропных модификаций в другие:

C (графит) → C (алмаз); P (белый) → P (красный).

В органической химии это реакции изомеризации – реакции, в результате которых из молекул одного вещества образуются молекулы других веществ того же качественного и количественного состава, т.е. с той же молекулярной формулой, но другим строением.

СН 2 -СН 2 -СН 3 → СН 3 -СН-СН 3

н-бутан 2-метилпропан (изобутан)

2) Реакции, идущие с изменением состава вещества:

а) Реакции соединения (в органической химии присоединения) – реакции, в ходе которых из двух и более веществ образуется одно более сложное: S + O 2 → SO 2

В органической химии это реакции гидрирования, галогенирования, гидрогалогенирования, гидратации, полимеризации.

СН 2 = СН 2 + НОН → СН 3 – СН 2 ОН

б) Реакции разложения (в органической химии отщепления, элиминирования) – реакции, в ходе которых из одного сложного вещества образуется несколько новых веществ:

СН 3 – СН 2 ОН → СН 2 = СН 2 + Н 2 О

2KNO 3 →2KNO 2 + O 2

В органической химии примеры реакций отщепления - дегидрирование, дегидратация, дегидрогалогенирование, крекинг.

в) Реакции замещения – реакции, в ходе которых атомы простого вещества замещают атомы какого-нибудь элемента в сложном веществе (в органической химии – реагентами и продуктами реакции часто являются два сложных вещества).

CH 4 + Cl 2 → CH 3 Cl +HCl ; 2Na+ 2H 2 O→ 2NaOH + H 2

Примеры реакций замещения, не сопровождающихся изменением степеней окисления атомов, крайне немногочисленны. Следует отметить реакцию оксида кремния с солями кислородсодержащих кислот, которым отвечают газообразные или летучие оксиды:

СаСО 3 + SiO 2 = СаSiO 3 + СО 2

Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5

г) Реакции обмена – реакции, в ходе которых два сложных вещества обмениваются своими составными частями:

NaOH + HCl → NaCl + H 2 O,
2CH 3 COOH + CaCO 3 → (CH 3 COO) 2 Ca + CO 2 + H 2 O

II. По изменению степеней окисления химических элементов, образующих вещества

1) Реакции, идущие с изменением степеней окисления, или ОВР:

∙2| N +5 + 3e – → N +2 (процесс восстановления, элемент – окислитель),

∙3| Cu 0 – 2e – → Cu +2 (процесс окисления, элемент – восстановитель),



8HNO 3 + 3Cu → 3Cu(NO 3) 2 + 2NO + 4H 2 O.

В органической химии:

C 2 H 4 + 2KMnO 4 + 2H 2 O → CH 2 OH–CH 2 OH + 2MnO 2 + 2KOH

2) Реакции, идущие без изменения степеней окисления химических элементов:

Li 2 O + H 2 O → 2LiOH,
HCOOH + CH 3 OH → HCOOCH 3 + H 2 O

III. По тепловому эффекту

1) Экзотермические реакции протекают с выделением энергии:

С + О 2 → СО 2 + Q,
СH 4 + 2O 2 → CO 2 + 2H 2 O + Q

2) Эндотермические реакции протекают с поглощением энергии:

СaCO 3 → CaO + CO 2 - Q

C 12 H 26 → C 6 H 14 + C 6 H 12 - Q

IV. По агрегатному состоянию реагирующих веществ

1) Гетерогенные реакции – реакции, в ходе которых реагирующие вещества и продукты реакции находятся в разных агрегатных состояниях:

Fe(тв) + CuSO 4 (р-р) → Cu(тв) + FeSO 4 (р-р),
CaC 2 (тв) + 2H 2 O(ж) → Ca(OH) 2 (р-р) + C 2 H 2 (г)

2) Гомогенные реакции – реакции, в ходе которых реагирующие вещества и продукты реакции находятся в одном агрегатном состоянии:

H 2 (г) + Cl 2 (г) → 2HCl(г),
2C 2 H 2 (г) + 5O 2 (г) → 4CO 2 (г) + 2H 2 O(г)

V. По участию катализатора

1) Некаталитические реакции, идущие без участия катализатора:

2Н 2 + О 2 → 2Н 2 О, С 2 Н 4 + 3О 2 → 2СО 2 + 2Н 2 О

2) Каталитические реакции, идущие с участием катализаторов:

2H 2 O 2 → 2H 2 O + O 2

VI. По направлению

1) Необратимые реакции протекают в данных условиях только в одном направлении:

С 2 Н 4 + 3О 2 → 2СО 2 + 2Н 2 О

2) Обратимые реакции в данных условиях протекают одновременно в двух противоположных направлениях: N 2 + 3H 2 ↔2NH 3



VII. По механизму протекания

1) Радикальный механизм.

А: В → А· + ·В

Происходит гомолитический (равноценный) разрыв связи. При гемолитическом разрыве пара электронов, образующая связь, делится таким образом, что каждая из образующихся частиц получает по одному электрону. При этом образуются радикалы – незаряженные частицы с неспаренными электрономи. Радикалы – очень реакционноспособные частицы, реакции с их участием происходят в газовой фазе с большой скоростью и часто со взрывом.

Радикальные реакции идут между образующимися в ходе реакции радикалами и молекулами:

2H 2 O 2 → 2H 2 O + O 2

CH 4 + Cl 2 → CH 3 Cl +HCl

Примеры: реакции горения органических и неорганических веществ, синтез воды, аммиака, реакции галогенирования и нитрования алканов, изомеризация и ароматизация алканов, каталитическое окисление алканов, полимеризация алкенов, винилхлорида и др.

2) Ионный механизм.

А: В → :А - + В +

Происходит гетеролитический (неравноценный) разрыв связи, при этом оба электрона связи остают­ся с одной из ранее связанных частиц. Образуются заряженные частиц (катионы и анионы).

Ионные реакции идут в растворах между уже имеющимися или образующимися в ходе реакции ионами.

Например, в неорганической химии – это взаимодействие электролитов в растворе, в органической химии – это реакции присоединения к алкенам, окисление и дегидрирование спиртов, замещение спиртовой группы и другие реакции, характеризующие свойства альдегидов и карбоновых кислот.

VIII. По виду энергии, инициирующей реакцию:

1) Фотохимические реакции происходят при воздействии квантов света. Например, синтез хлороводорода, взаимодействие метана с хлором, получение озона в природе, процессы фотосинтеза и др.

2) Радиационные реакции инициируются излучениями больших энергий (рентгеновскими лучами, γ-лучами).

3) Электрохимические реакции инициирует электрический ток, например, при электролизе.

4) Термохимические реакции инициируются тепловой энергией. К ним относятся все эндотермические реакции и множество экзотермических, для инициации которых необходима теплота.

Темы кодификатора ЕГЭ: Классификация химических реакций в органической и неорганической химии.

Химические реакции — это такой вид взаимодействия частиц, когда из одних химических веществ получаются другие, отличающиеся от них по свойствам и строению. Вещества, которые вступают в реакцию — реагенты . Вещества, которые образуются в ходе химической реакции — продукты .

В ходе химической реакции разрушаются химические связи, и образуются новые.

В ходе химических реакций не меняются атомы, участвующие в реакции. Меняется только порядок соединения атомов в молекулах. Таким образов, число атомов одного и того же вещества в ходе химической реакции не меняется .

Химические реакции классифицируют по разным признакам. Рассмотрим основные виды классификации химических реакций.

Классификация по числу и составу реагирующих веществ

По составу и числу реагирующих веществ разделяют реакции, протекающие без изменения состава веществ, и реакции, протекающие с изменением состава веществ:

1. Реакции, протекающие без изменения состава веществ (A → B)

К таким реакциям в неорганической химии можно отнести аллотропные переходы простых веществ из одной модификации в другую:

S ромбическая → S моноклинная.

В органической химии к таким реакциям относятся реакции изомериза-ции , когда из одного изомера под действием катализатора и внешних факторов получается другой (как правило, структурный изомер).

Например , изомеризация бутана в 2-метилпропан (изобутан):

CH 3 -CH 2 -CH 2 -CH 3 → CH 3 -CH(CH 3)-CH 3 .

2. Реакции, протекающие с изменением состава

  • Реакции соединения (A + B + … → D) — это такие реакции, в которых из двух и более веществ образуется одно новое сложное вещество. В неорганической химии к реакция соединения относятся реакции горения простых веществ, взаимодействие основных оксидов с кислотными и др. В органической химии такие реакции называются реакциями присоединения . Реакции присоединения это такие реакции, в ходе которых к рассматриваемой органической молекуле присоединяется другая молекула. К реакциям присоединения относятся реакции гидрирования (взаимодействие с водородом), гидратации (присоединение воды), гидрогалогенирования (присоединение галогеноводорода), полимеризация (присоединение молекул друг к другу с образованием длинной цепочки) и др.

Например , гидратация:

CH 2 =CH 2 + H 2 O → CH 3 -CH 2 -OH

  • Реакции разложения (A B + C + …) — это такие реакции, в ходе которых из одной сложной молекулы образуется несколько менее сложных или простых веществ. При этом могут образовываться как простые, так и сложные вещества.

Например , при разложении пероксида водорода :

2H 2 O 2 → 2H 2 O + O 2 .

В органической химии разделяют собственно реакции разложения и реакции отщепления. Реакции отщепления (элиминирования) это такие реакции, в ходе которых происходит отрыв атомов или атомных групп от исходной молекулы при сохранении ее углеродного скелета.

Например , реакция отщепления водорода (дегидрирование) от пропана :

C 3 H 8 → C 3 H 6 + H 2

Как правило, в названии таких реакций есть приставка «де». Реакции разложения в органической химии происходят, как правило, с разрывом углеродной цепи.

Например , реакция крекинга бутана (расщепление на более простые молекулы при нагревании или под действием катализатора):

C 4 H 10 → C 2 H 4 + C 2 H 6

  • Реакции замещения — это такие реакции, в ходе которых атомы или группы атомов одного вещества замещаются на атомы или группы атомов другого вещества. В неорганической химии эти реакции происходят по схеме:

AB + C = AC + B .

Например , более активные галогены вытесняют менее активные из соединений. Взаимодействие йодида калия с хлором :

2KI + Cl 2 → 2KCl + I 2 .

Замещаться могут как отдельные атомы, так и молекулы.

Например , при сплавлении менее летучие оксиды вытесняют более летучие из солей. Так, нелетучий оксид кремния вытесняет оксид углерода из карбоната натрия при сплавлении:

Na 2 CO 3 + SiO 2 → Na 2 SiO 3 + CO 2

В органической химии реакции замещения — это такие реакции, в ходе которых часть органической молекулы замещается на другие частицы . При этом замещенная частица, как правило, соединяется с частью молекулы-заместителя.

Например , реакция хлорирования метана :

CH 4 + Cl 2 → CH 3 Cl + HCl

По числу частиц и составу продуктов взаимодействия эта реакция больше похожа на реакцию обмена. Тем не менее, по механизму такая реакция является реакцией замещения.

  • Реакции обмена — это такие реакции, в ходе которых два сложных вещества обмениваются своими составными частями:

AB + CD = AC + BD

К реакциям обмена относятся реакции ионного обмена , протекающие в растворах; реакции, иллюстрирующие кислотно-основные свойства веществ и другие.

Пример реакции обмена в неорганической химии — нейтрализация соляной кислоты щелочью :

NaOH + HCl = NaCl + H 2 O

Пример реакции обмена в органической химии — щелочной гидролиз хлорэтана :

CH 3 -CH 2 -Cl + KOH = CH 3 -CH 2 -OH + KCl

Классификация химических реакций по изменению степени окисления элементов, образующих вещества

По изменению степени окисления элементов химические реакции делят на окислительно-восстановительные реакции , и реакции, идущие без изменения степеней окисления химических элементов.

  • Окислительно-восстановительные реакции (ОВР) — это реакции, в ходе которых степени окисления веществ изменяются . При этом происходит обмен электронами .

В неорганической химии к таким реакциям относятся, как правило, реакции разложения, замещения, соединения, и все реакции, идущие с участием простых веществ. Для уравнивания ОВР используют метод электронного баланса (количество отданных электронов должно быть равно количеству полученных) или метод электронно-ионного баланса .

В органической химии разделяют реакции окисления и восстановления, в зависимости от того, что происходит с органической молекулой.

Реакции окисления в органической химии — это реакции, в ходе которых уменьшается число атомов водорода или увеличивается число атомов кислорода в исходной органической молекуле.

Например , окисление этанола под действием оксида меди:

CH 3 -CH 2 -OH + CuO → CH 3 -CH=O + H 2 O + Cu

Реакции восстановления в органической химии — это реакции, в ходе которых увеличивается число атомов водорода или уменьшается число атомов кислорода в органической молекуле.

Например , восстановление уксусного альдегида водородом :

CH 3 -CH=O + H 2 → CH 3 -CH 2 -OH

  • Протолитические реакции и реакции обмена — это такие реакции, в ходе которые степени окисления атомов не изменяются.

Например , нейтрализация едкого натра азотной кислотой :

NaOH + HNO 3 = H 2 O + NaNO 3

Классификация реакций по тепловому эффекту

По тепловому эффекту реакции разделяют на экзотермические и эндотермические .

Экзотермические реакции — это реакции, сопровождающиеся выделением энергии в форме теплоты (+Q ). К таким реакциям относятся почти все реакции соединения.

Исключения — реакция азота с кислородом с образованием оксида азота (II) — эндотермическая:

N 2 + O 2 = 2NO – Q

Реакция газообразного водорода с твердым йодом также эндотермическая :

H 2 + I 2 = 2HI – Q

Экзотермические реакции, в ходе которых выделяется свет, называют реакциями горения .

Например , горение метана:

CH 4 + O 2 = CO 2 + H 2 O

Также экзотермическими являются:


Эндотермические реакции — это реакции, сопровождающиеся поглощением энергии в форме теплоты (— Q ). Как правило, с поглощением теплоты идет большинство реакций разложения (реакции, требующие длительного нагревания).

Например , разложение известняка :

CaCO 3 → CaO + CO 2 – Q

Также эндотермическими являются:

  • реакции гидролиза ;
  • реакции, идущие только при нагревании ;
  • реакции, протекающие только при очень высоких температурах или под действием электрического разряда.

Например , превращение кислорода в озон:

3O 2 = 2O 3 — Q

В органической химии с поглощением теплоты идут реакции разложения. Например , крекинг пентана :

C 5 H 12 → C 3 H 6 + C 2 H 6 – Q .

Классификация химических реакций по агрегатному состоянию реагирующих веществ (по фазовому составу)

Вещества могут существовать в трех основных агрегатных состояниях — твердом , жидком и газообразном . По фазовому состоянию разделяют реакции гомогенные и гетерогенные .

  • Гомогенные реакции — это такие реакции, в которых реагирующие вещества и продукты находятся в одной фазе , и столкновение реагирующих частиц происходит во всем объеме реакционной смеси. К гомогенным реакциям относят взаимодействия жидкость-жидкость и газ-газ .

Например , окисление сернистого газа :

2SO 2(г) + O 2(г) = 2SO 3(г)

  • Гетерогенные реакции — это реакции, в которых реагирующие вещества и продукты находятся в разных фазах . При этом столкновение реагирующих частиц происходит только на границе соприкосновения фаз . К таким реакциям относятся взаимодействия газ-жидкость, газ-твердая фаза, твердая-твердая, и твердая фаза — жидкость .

Например , взаимодействие углекислого газа и гидроксида кальция :

CO 2(г) + Ca(OH) 2(р-р) = CaCO 3(тв) + H 2 O

Для классификации реакций по фазовому состоянию полезно уметь определять фазовые состояния веществ . Это достаточно легко сделать, используя знания о строении вещества, в частности, о .

Вещества с ионной , атомной или металлической кристаллической решеткой , как правило твердые при обычных условиях; вещества с молекулярной решеткой , как правило, жидкости или газы при обычных условиях.

Обратите внимание, что при нагревании или охлаждении вещества могут переходить из одного фазового состояния в другое. В таком случае необходимо ориентироваться на условия проведения конкретной реакции и физические свойства вещества.

Например , получение синтез-газа происходит при очень высоких температурах, при которых вода — пар:

CH 4(г) + H2O (г) = CO (г) + 3H 2(г)

Таким образом, паровая конверсия метана гомогенная реакция .

Классификация химических реакций по участию катализатора

Катализатор — это такое вещество, которое ускоряет реакцию, но не входит в состав продуктов реакции. Катализатор участвует в реакции, но практичсеки не расходуется в ходе реакции. Условно схему действия катализатора К при взаимодействии веществ A + B можно изобразить так: A + K = AK; AK + B = AB + K.

В зависимости от наличия катализатора различают каталитические и некаталитические реакции.

  • Каталитические реакции — это реакции, которые идут с участием катализаторов. Например, разложение бертолетовой соли: 2KClO 3 → 2KCl + 3O 2 .
  • Некаталитические реакции — это реакции, которые идут без участия катализатора. Например, горение этана: 2C 2 H 6 + 5O 2 = 2CO 2 + 6H 2 O.

Все реакции, протекающие с участием в клетках живых организмов, протекают с участием особых белковых катализаторов — ферментов. Такие реакции называют ферментативными.

Более подробно механизм действия и функции катализаторов рассматриваются в отдельной статье.

Классификация реакций по направлению

Обратимые реакции — это реакции, которые могут протекать и в прямом, и в и обратном направлении, т.е. когда при данных условиях продукты реакции могут взаимодействовать друг с другом. К обратимым реакциям относятся большинство гомогенных реакций, этерификация; реакции гидролиза; гидрирование-дегидрирование, гидратация-дегидратация; получение аммиака из простых веществ, окисление сернистого газа, получение галогеноводородов (кроме фтороводорода) и сероводорода; синтез метанола; получение и разложение карбонатов и гидрокарбонатов, и т.д.

Необратимые реакции — это реакции, которые протекают преимущественно в одном направлении, т.е. продукты реакции не могут взаимодействовать друг сдругом при данных условиях. Примеры необратимых реакций: горение; реакции, идущие со взрывом; реакции, идущие с образованием газа, осадка или воды в растворах; растворение щелочных металлов в воде; и др.

Химия - наука о веществах, закономерностях их превращений (физических и химических свойствах) и применении.

В настоящее время известно более 100 тыс. неорганических и более 4 млн. органических соединений.

Химические явления: одни вещества превращаются в другие, отличающиеся от исходных составом и свойствами, при этом состав ядер атомов не изменяется.

Физические явления: меняется физическое состояние веществ (парообразование, плавление, электропроводность, излучение тепла и света, ковкость и др.) или образуются новые вещества с изменением состава ядер атомов.

Атомно - молекулярное учение.

1. Все вещества состоят из молекул.

Молекула - наименьшая частица вещества, обладающая его химическими свойствами.

2. Молекулы состоят из атомов.

Атом - наименьшая частица химического элемента, сохраняющая все его химические свойства. Различным элементам соответствуют различные атомы.

3. Молекулы и атомы находятся в непрерывном движении; между ними существуют силы притяжения и отталкивания.

Химический элемент - это вид атомов, характеризующийся определенными зарядами ядер и строением электронных оболочек. В настоящее время известно 118 элементов: 89 из них найдены в природе (на Земле), остальные получены искусственным путем. Атомы существуют в свободном состоянии, в соединениях с атомами того же или других элементов, образуя молекулы. Способность атомов вступать во взаимодействие с другими атомами и образовывать химические соединения определяется его строением. Атомы состоят из положительно заряженного ядра и отрицательно заряженных электронов, движущихся вокруг него, образуя электронейтральную систему, которая подчиняется законам, характерным для микросистем.

Атомное ядро - центральная часть атома, состоящая из Zпротонов и Nнейтронов, в которой сосредоточена основная масса атомов.

Заряд ядра - положительный, по величине равен количеству протонов в ядре или электронов в нейтральном атоме и совпадает с порядковым номером элемента в периодической системе.

Сумма протонов и нейтронов атомного ядра называется массовым числом A= Z+ N .

Изотопы - химические элементы с одинаковыми зарядами ядер, но различными массовыми числами за счет разного числа нейтронов в ядре.

Массовое
число ®
Заряд ®
ядра

A
Z

63
29

Cu и

65
29

35
17

Cl и

37
17

Химическая формула - это условная запись состава вещества с помощью химических знаков (предложены в 1814 г. Й. Берцелиусом) и индексов (индекс - цифра, стоящая справа внизу от символа. Обозначает число атомов в молекуле). Химическая формула показывает, атомы каких элементов и в каком отношении соединены между собой в молекуле.

Аллотропия - явление образования химическим элементом нескольких простых веществ, различающихся по строению и свойствам. Простые вещества - молекулы, состоят из атомов одного и того же элемента.

C ложные вещества - молекулы, состоят из атомов различных химических элементов.

Постоянная атомной массы равна 1 / 12 массы изотопа 12 C - основного изотопа природного углерода.

m u = 1 / 12 m (12 C ) =1 а.е.м = 1,66057 10 -24 г

Относительная атомная масса (A r ) - безразмерная величина, равная отношению средней массы атома элемента (с учетом процентного содержания изотопов в природе) к 1 / 12 массы атома 12 C .

Средняя абсолютная масса атома (m ) равна относительной атомной массе, умноженной на а.е.м.

A r (Mg ) = 24,312

m (Mg ) = 24,312 1,66057 10 -24 = 4,037 10 -23 г

Относительная молекулярная масса (M r ) - безразмерная величина, показывающая, во сколько раз масса молекулы данного вещества больше 1 / 12 массы атома углерода 12 C .

M г = m г / (1 / 12 m а (12 C ))

m r - масса молекулы данного вещества;

m а (12 C ) - масса атома углерода 12 C .

M г = S A г (э). Относительная молекулярная масса вещества равна сумме относительных атомных масс всех элементов с учетом индексов.

Примеры.

M г (B 2 O 3 ) = 2 A r (B ) + 3 A r (O ) = 2 11 + 3 16 = 70

M г (KAl(SO 4) 2) = 1 A r (K) + 1 A r (Al) + 1 2 A r (S) + 2 4 A r (O) =
= 1 39 + 1 27 + 1 2 32 + 2 4 16 = 258

Абсолютная масса молекулы равна относительной молекулярной массе, умноженной на а.е.м. Число атомов и молекул в обычных образцах веществ очень велико, поэтому при характеристике количества вещества используют специальную единицу измерения - моль.

Количество вещества, моль . Означает определенное число структурных элементов (молекул, атомов, ионов). Обозначается n , измеряется в моль. Моль - количество вещества, содержащее столько же частиц, сколько содержится атомов в 12 г углерода.

Число Авогадро (N A ). Количество частиц в 1 моль любого вещества одно и то же и равно 6,02 10 23 . (Постоянная Авогадро имеет размерность - моль -1).

Пример.

Сколько молекул содержится в 6,4 г серы?

Молекулярная масса серы равна 32 г /моль. Определяем количество г/моль вещества в 6,4 г серы:

n (s ) = m (s ) / M (s ) = 6,4г / 32 г/моль = 0,2 моль

Определим число структурных единиц (молекул), используя постоянную Авогадро N A

N(s) = n (s) N A = 0,2 6,02 10 23 = 1,2 10 23

Молярная масса показывает массу 1 моля вещества (обозначается M ).

M = m / n

Молярная масса вещества равна отношению массы вещества к соответствующему количеству вещества.

Молярная масса вещества численно равна его относительной молекулярной массе, однако первая величина имеет размерность г/моль, а вторая - безразмерная.

M = N A m (1 молекула) = N A M г 1 а.е.м. = (N A 1 а.е.м.) M г = M г

Это означает, что если масса некоторой молекулы равна, например, 80 а.е.м. ( SO 3 ), то масса одного моля молекул равна 80 г. Постоянная Авогадро является коэффициентом пропорциональности, обеспечивающим переход от молекулярных соотношений к молярным. Все утверждения относительно молекул остаются справедливыми для молей (при замене, в случае необходимости, а.е.м. на г) Например, уравнение реакции: 2 Na + Cl 2 2 NaCl , означает, что два атома натрия реагируют с одной молекулой хлора или, что одно и то же, два моль натрия реагируют с одним молем хлора.